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ABSTRACT 20 

Liver Kinase B1 (LKB1) is known as a master kinase for 14 kinases related to the 21 

adenosine monophosphate (AMP)-activated protein kinase (AMPK). Two of them salt 22 

inducible kinase 3 (SIK3) and AMPKα have previously been implicated in sleep 23 

regulation. We generated loss-of-function (LOF) mutants for Lkb1 in both Drosophila 24 

and mice. Sleep, but not circadian rhythms, was reduced in Lkb1-mutant flies and in 25 

flies with neuronal deletion of Lkb1. Genetic interactions between Lkb1 and 26 

Threonine to Alanine mutation at residue 184 of AMPK in Drosophila sleep or those 27 

between Lkb1 and Threonine to Glutamic Acid mutation at residue 196 of SIK3 in 28 

Drosophila viability have been observed. Sleep was reduced in mice after virally 29 

mediated reduction of Lkb1 in the brain. Electroencephalography (EEG) analysis 30 

showed that non-rapid eye movement (NREM) sleep and sleep need were both reduced 31 

in Lkb1-mutant mice. These results indicate that LKB1 plays a physiological role in 32 

sleep regulation conserved from flies to mice. 33 

  34 
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INTRODUCTION 35 

Human Peutz-Jeghers syndrome (PJS) (Jeghers et al. 1949; Peutz 1921) is an autosomal 36 

dominant disorder with gastrointestinal (GI) polyps and increased cancer risk of 37 

multiple tissues (Tomlinson and Houlston 1997; Westerman et al. 1999). The gene 38 

mutated in, and responsible for, PJS encodes the liver kinase B1 (LKB1, also known as 39 

STK11) (Hemminki et al. 1998; Hemminki et al. 1997; Jenne et al. 1998). Lkb1 is thus 40 

a tumor suppressor gene, mutated in multiple cancers, especially the GI (Bardeesy et al. 41 

2002; Hearle et al. 2006; Jishage et al. 2002; Mehenni et al. 1998; Miyoshi et al. 2002) 42 

and lung adenocarcinoma (Carretero et al. 2004; Gill et al. 2011; Ji et al. 2007; 43 

Matsumoto et al. 2007; Sanchez-Cespedes et al. 2002; Skoulidis et al. 2015), cervical 44 

cancer (Wingo et al. 2009), ovarian cancer (Tanwar et al. 2014), breast cancer (Hearle 45 

et al. 2006; Sengupta et al. 2017; Shen et al. 2002), pancreatic cancer (Morton et al. 46 

2010) and melanoma (Guldberg et al. 1999; Rowan et al. 1999). 47 

LKB1 phosphorylates threonine 172 (T172) of the α subunit of adenosine 48 

monophosphate (AMP)-activated protein kinase (AMPKα) (Hawley et al. 2003; Hong 49 

et al. 2003; Lizcano et al. 2004; Sakamoto et al. 2005; Shaw et al. 2004; Shaw et al. 50 

2005; Sutherland et al. 2003; Woods et al. 2003), and positively regulates the activity of 51 

AMPK. 52 

AMPK is a well-known kinase (Beg et al. 1973; Carling et al. 1989; Carling et al. 53 

1987; Carlson and Kim 1973; Ferrer et al. 1985; Ingebritsen et al. 1978; Munday et al. 54 

1988; Yeh and Kim 1980) with important physiological and pathological roles (Hardie 55 
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2014; Hardie et al. 2016; Herzig and Shaw 2018; Lopez and Dieguez 2014). The α, β 56 

and γ subunits of AMPK form a heterotrimeric complex (Davies et al. 1994; Michell et 57 

al. 1996; Mitchelhill et al. 1994). The catalytic α subunit is regulated by 58 

phosphorylation at T172 of AMPKα2 or T183 of AMPKα1 (Hawley et al. 1996).  59 

There are 12 additional mammalian AMPK-related kinases (ARKs), similar to the 60 

α subunit of AMPK, all regulated at the site equivalent to AMPK-T172 (Lizcano et al. 61 

2004). LKB1 and its associated proteins STE20-related adaptor (STRAD) and mouse 62 

protein 25 (MO25) have been reported to phosphorylate all 14 ARKs (Lizcano et al. 63 

2004), making LKB1 a master kinase for ARKs (Alessi et al. 2006; Lizcano et al. 2004; 64 

Shackelford and Shaw 2009). We have recently found that more than 20 kinases in the 65 

STE20 family of mammalian serine-threonine kinases could phosphorylate ARKs in 66 

vitro, though the physiological roles of STE20 kinases in ARK phosphorylation remain 67 

unknown (Liu et al., 2022a, 2022b). 68 

Some ARKs have been reported to regulate sleep. In mice, inhibitors of AMPK 69 

were found to decrease sleep, whereas activators of AMPK were found to increase 70 

sleep (Chikahisa et al. 2009). In flies, knockdown of AMPKβ in neurons decreased the 71 

total amount of sleep and resulted in fragmented sleep (Nagy et al. 2018). Knockdown 72 

of AMPKα in a specific pair of neurons suppressed sleep (Yurgel et al. 2019). 73 

Studies in mice have shown that sleep was increased in gain-of-function (GOF) 74 

mutations in the salt inducible kinase (SIK) 3 (Funato et al. 2016), and sleep need was 75 

reduced in GOF mutants of SIK 1, 2 and 3 (Funato et al. 2016; Honda et al. 2018; Park 76 
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et al. 2020). Sleep was also decreased when SIK3 was downregulated in flies (Funato et 77 

al. 2016). Here we investigated the functional role of LKB1 in regulating sleep in flies 78 

and mice.  79 

 80 

MATERIALS AND METHODS 81 

Fly lines and rearing conditions: Flies were reared on standard corn meal at 25℃, 82 

60% humidity and kept in 12 hours (h) light/12 h dark (LD) conditions. 57C10-Gal4, 83 

nos-phiC31, hs-Cre on X were from the Bloomington Stock Center. vas-Cas9 was a 84 

gift from Dr. J. Ni (Tsinghua University, Beijing). UAS-Cas9, UAS-Ampk, 85 

UAS-Ampk-T184A, UAS-Ampk-T184E, Sik3-flag, Sik3--T196A-flag, 86 

Sik3-T196E-flag flies were from our laboratory.  87 

Flies used in behavioral assays were backcrossed into our isogenized Canton S 88 

background for 7 generations. All results of sleep analysis in this paper were obtained 89 

from female flies. 90 

Generation of KO, KI and transgenic lines: Total RNA was extracted from isoCS 91 

by TRIzol reagent (Invitrogen). Using the PrimeScript II 1st Strand cDNA Synthesis 92 

Kit (Takara), we reverse-transcribed the extracted mRNA into cDNA. The UAS-Lkb1 93 

flies was constructed by inserting the coding sequence of CG9374 amplified from 94 

cDNA into the pACU2 plasmid (a gift from the Jan Lab at UCSF) (Han et al. 2011) 95 

before being inserted into the attP40 site. 96 

The UAS-Lkb1-sgRNA construct was designed by inserting the sgRNAs into 97 

pMt:sgRNA3XEF vectors based on pACU2, with rice tRNA separating the different 98 
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sgRNAs. CRISPR-Gold website was used to design 3 sgRNAs of Lkb1 (Figure S3) 99 

(Chu et al. 2016; Poe et al. 2019). The construct was inserted into the attP40 site. 100 

KO and KI lines were generated as described previously (Deng et al. 2019). 101 

Knockout flies were generated with the CRISPR/Cas9 system. Two different sgRNAs 102 

were constructed with U6b-sgRNA plasmids. The 5’ homologous arm and the 3’ 103 

homologous arm of ~2kb amplified from the wt fly genome were inserted into a 104 

pBSK plasmid for homologous recombination repair. The cassette of attP-3P3-RFP 105 

was introduced in the middle. sgRNA plasmids and the donor plasmids were injected 106 

into vas-Cas9 embryos to introduce attP-3P3-RFP into the genome at the region of 107 

interest and replaced it by homologous recombination. 3P3-RFP served as a marker to 108 

screen for the correct flies. Primers across the homologous arms were designed to 109 

verify the sequences by PCR and DNA sequencing. attP site was introduced into the 110 

genome with 3P3-RFP-LoxP. For KI files, the nos-phiC31 virgin females were first 111 

crossed with knock-out males and the pBSK plasmid inserted with 112 

attB-T2A-Gal4-miniwhite-LoxP cassette was injected into the female embryos. 113 

Miniwhite serves as a marker to screen for the correct flies, which could be excised by 114 

the Cre/LoxP system. Primers were designed to verify the sequence by PCR and DNA 115 

sequencing. 116 

Quantitative PCR: Total RNA was extracted from 30 flies of 5-7 days old by TRIzol 117 

reagent (Invitrogen). The genomic template was removed using DNase (Takara). 118 

cDNA was reverse- transcribed using Takara's PrimeScript II 1st Strand cDNA 119 
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synthesis kit (Takara). Quantitative PCR was carried out with TransStart Top Green 120 

qPCR SuperMix kit (TransGen) in the Bio-Rad PCR system (CFX96 Touch Deep 121 

Well). The sequences of primers used to detect Lkb1 and RP49(endogenous control) 122 

mRNA are: 123 

Lkb1-F: 5’ -GCCGTCAAGATCCTGACTA-3’ 124 

Lkb1-R: 5’-CTCCGCTGGACCAGATG-3’ 125 

Rp49-F: 5’-CGACGCTTCAAGGGACAGTATC-3’ 126 

Rp49-R: 5’-TCCGACCAGGTTACAAGAACTCTC-3’ 127 

Drosophila sleep analysis: Drosophila sleep analysis was performed as described 128 

previously (Dai et al. 2019; Qian et al. 2017). 5-7 days old flies were placed in a 129 

65mm x 5mm clear glass tube with one end containing food and the other end 130 

plugging with cotton. All flies were recorded by video-cameras. Before sleep 131 

measurement, flies were entrained to an LD cycle at 25℃, 60% humidity for at least 132 

two days, and infrared LED light was used to ensure constant illumination when lights 133 

off. Immobility longer than 5 minutes was defined as one sleep event (Hendricks et al. 134 

2000; Shaw et al. 2000). Information of fly location was tracked and sleep parameters 135 

were analyzed using Matlab (Mathworks), from which dead flies were removed. 136 

Sleep duration, sleep bout duration, sleep bout number and sleep latency for each LD 137 

were analyzed. Each experiment was repeated at least three times. 138 

Drosophila circadian analysis: Flies were reared and recorded in the same condition 139 

as sleep assay as described in papers from our lab (Dai et al. 2021; Qian et al. 2017), 140 
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except that the condition was constant darkness. 6-8 days activity was measured and 141 

calculated in ActogramJ (Klarsfeld et al. 2003). Rhythmic strength, power and period 142 

were calculated by Chi-square method. 143 

Immunoblot analysis: Mouse brains were quickly dissected and washed with 144 

phosphate buffer saline (PBS) on ice. Lysis buffer (20mM HEPES, 10mM KCl, 145 

1.5mM MgCl2, 1mM EDTA, 1mM EGTA, 1mM DTT, freshly supplemented with a 146 

protease and phosphatase inhibitors cocktail) were used to homogenize brains by 147 

homogenizer (Wiggens, D-500 pro) at 4℃. Brain homogenates were centrifuged at 148 

14,000 revolution per minutes (rpm) for 15 minutes at 4℃. The supernatant was 149 

transferred to a new microtube and quantified with bicinchoninic acid assay (Thermo 150 

Fisher, 23225). The supernatant was analyzed by SDS-PAGE and proteins were 151 

transferred to a nitrocellulose membrane (GE Healthcare, #BA85). Membranes were 152 

incubated for 1 h in a blocking solution (Tris-buffered saline (TBS) containing 0.1% 153 

Tween-20, 5% milk). Primary antibodies were anti-LKB1 (cell signaling, #3047) and 154 

anti-ACTIN (Santa Cruz, sc-8342). 155 

Retro-orbital injection in mice: Mice were reared at controlled temperature and 156 

humidity conditions with 12 h light/ 12 h dark cycle. Food and water were provided 157 

ad libitum. Lkb1fl/fl mice were from the Jackson Laboratory (JAX #014143). They 158 

contained loxP sites flanking exons 3-6 of Lkb1 gene (Nakada et al. 2010). 159 

AAV-PHP.eB-hSyn-Cre-GFP and AAV-PHP.eB-hSyn-GFP virus were from Chinese 160 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyac082/6586797 by guest on 18 M

ay 2022



 
9 

Institute for Brain Research, Beijing. All results of sleep analysis in this paper were 161 

obtained from female mice. 162 

0.2 ml/10 g Avertin was injected intraperitoneally into the mice for 163 

anesthetization. Rodent eyes were protruded by gentle downward pressure to the skin 164 

on the dorsal and ventral sides of the eye. The operator inserted the needle beveled 165 

downward into the retro-orbital sinus at the medial corner of the eye (Yardeni et al. 166 

2011). The AAV-PHP.eB virus was injected for whole brain infection (Chan et al. 167 

2017). 168 

Mouse sleep analysis: Mouse sleep analysis was described in a previous article from 169 

our laboratory (Zhang et al. 2018). Eight-week-old mice were selected for 170 

retro-orbital injection. One week after viral injection, EEG and EMG electrode 171 

implantation procedures were performed. Mice were allowed to recover for more than 172 

5 days individually and placed in a recording cage and tethered to an omni-directional 173 

arm (RWD Life Science Inc.) with connection cable for 2 days of habituation before 174 

recording. EEG and EMG data were recorded with custom software at a sampling 175 

frequency of 200 Hz for 2 consecutive days to analyze sleep/wake behavior under 176 

baseline conditions. The recording chamber was maintained at 12 h LD cycle and 177 

controlled temperature (24-25°C). EEG/EMG data were initially processed by 178 

Accusleep (Barger et al. 2019) before manual correction in SleepSignTM to improve 179 

accuracy. WAKE was scored as high amplitude and variable EMG and fast and low 180 

amplitude EEG. NREM was scored as high amplitude δ (1-4 Hz) frequency EEG and 181 
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low EMG tonus. REM was scored as a complete silent of EMG signals and low 182 

amplitude high frequency θ (6-9 Hz)-dominated EEG signal. 183 

For power spectrum analysis, EEG was subjected to fast Fourier transform (FFT) 184 

analysis with a Hamming window method by SleepSignTM, yielding power spectra 185 

between 0-25 Hz with a 0.39Hz bin resolution. Epochs containing movement artifacts 186 

were marked, included in sleep duration analysis but excluded from the power spectra 187 

analysis. Power spectra for each vigilance state represents the mean power distribution 188 

of this state during a 24-h baseline recording. The δ-power density of NREMS per hour 189 

represents the average of δ-power density as a percentage of δ-band power (1-4 Hz) to 190 

total power (0-25 Hz) for each NREM epoch contained in an hour. 191 

 192 

Statistics: All statistical analyses were performed with Prism 7 (GraphPad Software). 193 

Differences in means between samples larger than two groups were analyzed using 194 

ordinary One-way ANOVA. Unpaired t test was used for two groups comparison. 195 

Power spectrum between different lines was compared by two-way ANOVA followed 196 

by Turkey’s multiple comparisons test. Ns denotes p>0.05, * denotes p<0.05, ** 197 

denotes p<0.01 and *** denotes p<0.001 for all statistical results in this paper. 198 

 199 

RESULTS 200 

Sleep phenotypes of Drosophila Lkb1 mutants: Null mutants for Lkb1 are lethal in 201 

Drosophila (Martin and St Johnston 2003). We had generated a Lkb1 knockout 202 
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(“lkb1T1”) line (Figure S1A, S3B) and found that lkb1T1/T1 mutation was lethal in the 203 

pupa stage. The level of Lkb1 mRNA was reduced in the heterozygous lkb1T1/+ flies 204 

(Figure S1B). We then tested whether the heterozygous lkb1T1 had any phenotype in 205 

sleep using flies kept in 12 hours (h) light/ 12 h dark (LD) cycles (Figure S1C). While 206 

lkb1T1/+ flies were not significantly different from the wild type (wt) flies in sleep bout 207 

numbers (Figure S1E), or daytime sleep duration (Figure S1D), daytime sleep bout 208 

duration (Figure S1F), lkb1T1/+ flies showed significantly lower nighttime sleep 209 

duration (Figure S1D), nighttime sleep bout duration (Figure S1F) and longer latency to 210 

sleep (Figure S1G). Thus, there was dosage-sensitive physiological requirement of 211 

Lkb1 in nighttime sleep.  212 

 We tried to, and succeeded in, generating lkb1T2, a hypomorphic mutation for Lkb1 213 

in flies (Figure 1A, S3A and S3B). Lkb1 mRNA was significantly reduced in lkb1T2/+ 214 

and lkb1T2/T2 flies (Figure 1B). During the day, lkb1T2/T2 flies were not significantly 215 

different from the lkb1T2/+ and wt flies in sleep duration (Figure 1C, 1D), sleep bout 216 

number (Figure 1E), sleep bout duration (Figure 1F) or latency to sleep (Figure 1G). 217 

During the night, not only lkb1T2/T2 flies showed significantly reduced sleep duration 218 

(Figure 1C, 1D), highly reduced sleep bout duration (Figure 1F) and highly increased 219 

latency (Figure 1G) than the wt flies, but also the heterozygous lkb1T2/+ flies were 220 

significantly different from the wt flies in all these parameters (Figure 1C to 1G), 221 

indicating a dosage sensitive requirement for Lkb1. 222 
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We examined the phenotypes of lkb1T1/T2. Consistent with the lkb1T2/T2, the 223 

mRNA levels of Lkb1 were significantly reduced in lkb1T1/T2 compared to wt, lkb1T1/+ 224 

and lkb1T2/+, and even lower than that in lkb1T2/T2 (Figure S2A). 225 

The sleep phenotype in lkb1T1/T2 flies was also consistent with lkb1T2/T2, with 226 

highly reduced nighttime sleep duration (Figure S2B, S2C), highly reduced sleep bout 227 

duration (Figure S2E) and highly increased latency to sleep (Figure S2F), when 228 

compared with wt, lkb1T1/+ and lkb1T2/+ flies. 229 

 Results of sleep analysis of lkb1T1/+, lkb1T2/+, lkb1T2/T2, and lkb1T1/T2 mutant flies 230 

all consistently support that Lkb1 plays a physiological role in promoting sleep. 231 

Rescue of sleep phenotypes by Lkb1 in flies: We inserted the sequence of the yeast 232 

transcription factor Gal4 into the lkb1T2 mutant flies, flanking the lkb1 promoter, and 233 

obtained lkb1T2-Gal4 flies (Figure 2A). We also generated UAS-Lkb1 flies in which 234 

the Lkb1 coding sequence (CDS) was expressed under the control of the upstream 235 

activation sequence (UAS) (Brand and Perrimon 1993). Because Gal4 protein binds to 236 

the UAS, the expression of Lkb1 in flies resulting from the crosses between 237 

lkb1T2-Gal4 flies and UAS-Lkb1 flies would be under the control of the endogenous 238 

Lkb1 promoter. Indeed, expression of Lkb1 mRNA was restored when lkb1T2-Gal4 and 239 

UAS-Lkb1 were present in the same flies (Figure 2B), whereas Lkb1 mRNA was less 240 

in wt flies. UAS-Lkb1;lkb1T2/T2 mutant flies, and lkb1T2-Gal4/lkb1T2-Gal4 flies than 241 

that in the wt. UAS-Lkb1 alone could not restore Lkb1 mRNA expression level to that 242 

in wt flies (Figure 2B). 243 
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 Both daytime and nighttime sleep durations were less in lkb1T2-Gal4/ lkb1T2-Gal4 244 

flies than those in wt flies (Figure 2C). Introduction of UAS-Lkb1 in lkb1T2/T2 flies or 245 

lkb1T2-Gal4 alone could not restore sleep. When both lkb1T2-Gal4 and UAS-Lkb1 were 246 

present, nighttime sleep durations were restored (Figure 2D). Nighttime sleep bout 247 

number, nighttime sleep bout duration and nighttime latency were restored when both 248 

lkb1T2-Gal4 and UAS-Lkb1 were present, but not when lkb1T2-Gal4 or UAS-Lkb1 249 

alone was present (Figure 2E, 2F and 2G).  250 

These results support that the sleep phenotypes of lkb1T2/T2 were attributable to the 251 

reduction of Lkb1 mRNA expression in these flies. 252 

Sleep phenotypes of flies carrying neuronal deletion of the Lkb1 gene: To 253 

determine whether Lkb1 functions in neurons, we used the CRISPR-Cas9 system to 254 

delete Lkb1 from neurons specifically (Figure S4). A pan-neuronal Gal4 driver 255 

(57C10-Gal4) was used to control the expression of small guide RNA (sgRNA) 256 

targetting Lkb1 in neurons. Compared to 57C10-Gal4>UAS-Cas9 alone or 257 

57C10-Gal4>UAS-Lkb1-sgRNA alone, when both UAS-Cas9 and UAS-Lkb1-sgRNA 258 

were present in flies, nighttime sleep duration (Figure 3B) and nighttime sleep bout 259 

duration (Figure 3D) were significantly reduced and nighttime sleep latency 260 

significantly lengthened (Figure 3E). Daytime sleep duration, bout number, bout 261 

duration and latency were not significantly affected by neuronal gene targeting of Lkb1 262 

(Figure 3B, 3C, 3D and 3E). 263 
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We also investigated any potential effect that overexpression of Lkb1 in neurons 264 

might cause (Figure S5A). We detected no phenotype resulting from neuronal 265 

overexpression of Lkb1 on daytime and nighttime sleep duration, sleep bout number, 266 

sleep bout duration or latency (Figure S5B, S5C, S5D, S5E and S5F).  267 

In all three series of experiments (Figures 1, 2 and 3), nighttime sleep phenotypes 268 

were more obvious than daytime sleep phenotypes. These results strongly indicate that 269 

Lkb1 expression in neurons are required physiologically for sleep, especially nighttime 270 

sleep. 271 

Genetic interactions between Lkb1 and Ampk or Sik3 in flies: To examine 272 

potential genetic interactions of Lkb1 with either Ampk or Sik3, we combined the 273 

LOF Lkb1 mutation lkb1T2 with specific point mutations in either Ampk or Sik3.  274 

The regulatory site T184 in Drosophila AMPK and T196 in Drosophila SIK3 275 

were equivalent to T172 of mammalian AMPK2 and T221 of mammalian SIK3, 276 

important for their activities. When the endogenous T184 in fly AMPK was mutated 277 

to alanine (A) or glutamic acid (E), flies were lethal. We therefore introduced T184A 278 

and T184E mutations into an Ampk transgene whose expression was controlled by 279 

UAS. We introduced UAS-Ampk, UAS-Ampk-T184A, and UAS-Ampk-T184E into 280 

lkb1T2/T2 flies and used a pan-neuronal driver to express them in neurons (Figure 4). 281 

Neuronal overexpression of Ampk-T184E (Figure 4A) and UAS-Ampk (Figure 4C) 282 

in lkb1T2 flies did not significantly change the sleep phenotypes of lkb1T2/T2 flies, but 283 
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neuronal overexpression of UAS-Ampk-T184A (Figure 4B) in lkb1T2/T2 flies further 284 

decreased nighttime sleep duration. 285 

Point mutations of Sik3-flag, Sik3-T196A-flag and Sik3-T196E-flag were 286 

constructed in Drosophila. When the endogenous T196 in Sik3 was mutated to A or E, 287 

we could get homozygous flies. Upon crossing to lkb1T2/T2, Sik3-T196A-flag;lkb1T2/T2 288 

were homozygous lethal. The cross of Sik3-T196E-flag into the lkb1T2/T2 background 289 

generated viable flies, with no detectable change in sleep (Figure 5). 290 

Allele-specific genetic interactions between Lkb1 and Ampk in sleep, or between 291 

Lkb1 and Sik3 in viability, suggest, but do not prove, regulatory relationships between 292 

Lkb1 and Ampk in sleep or Sik3 in viability. 293 

Circadian rhythm in Lkb1 mutant flies: The transcription factor differentiated 294 

embryo-chondrocyte 1 (DEC1) regulates circadian rhythm and can negatively regulate 295 

the transcription of Lkb1 and subsequently reduce AMPK activity (Sato et al. 2015).  296 

 We tested whether the circadian rhythm was affected in Lkb1 mutant flies. Lkb1 297 

mutant flies were not different from wt flies in period length (Figure S7B). Relative 298 

rhythmic power was increased in lkb1T2/+ and lkb1T2/T2 mutants than wt flies. (Figure 299 

S7). 300 

Sleep phenotypes in Lkb1 conditional knockout mice: To investigate potential 301 

involvement of Lkb1 in regulating sleep of mammalian animals, we obtained Lkb1fl/fl 302 

mice in which the loxP sites flanked exons 3 to 6 of the Lkb1 gene (Nakada et al. 2010). 303 

To delete the Lkb1 gene from these mice, we injected adeno-associated viral (AAV) 304 
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constructs expressing either the Cre recombinase together with the green fluorescent 305 

protein (GFP) or GFP alone to infect the mouse brain. Cre-GFP or GFP was under the 306 

control of a neuronal specific promoter human Synapsin I (hSyn) (in 307 

AAV-PHP.eB-hSyn-Cre-GFP or AAV-PHP.eB-hSyn-GFP).  308 

 We analyzed the expression of LKB1 protein in mice (Figure 6A, 6B). Injection of 309 

Cre-GFP expressing virus into wt or Lkb1fl/+ mice did not reduce LKB1 protein 310 

expression in the brain. Neither did injection of only GFP expressing virus into Lkb1fl/fl 311 

mice. This conclusion was reached by examination of either several mouse brains 312 

combined (Figure 6A), or individual mouse brains (Figure 6B). 313 

 Functionally, only when the Cre-GFP expressing virus was injected into Lkb1fl/fl 314 

mice, wake duration was significantly increased during daytime (Figure 6C, S6A), 315 

non-rapid eye movement (NREM) sleep duration was significantly decreased during 316 

daytime (Figure 6E, S6B). Controls (Cre-GFP injection into wt or Lkb1fl/+ mice, GFP 317 

injection into Lkb1fl/fl mice) did not significantly changed any sleep phenotypes. 318 

 Rapid eye movement (REM) sleep duration was not significantly affected by 319 

Cre-GFP injection into Lkb1fl/fl mice (Figure 6G, S6C). 320 

 Power density in the 1-4 Hz range (δ power density) of NREM is a commonly 321 

accepted indicator of sleep need (Borbely 1982; Borbely et al. 1981; Daan et al. 1984; 322 

Dijk et al. 1987; Franken et al. 2001; Tobler and Borbely 1986; Werth et al. 1996). We 323 

found that NREM δ power density was significantly reduced when the Cre-GFP 324 

expressing virus was injected into Lkb1fl/fl mice (Figure 6F). Analysis over 24 h 325 
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indicated that significant reduction was observed over most of the daily cycle (Figure 326 

6I).  327 

 328 

DISCUSSION 329 

Our results indicate that LKB1 is required for sleep regulation: it plays an important 330 

and conserved role by promoting sleep in both flies and mice. LKB1 plays this role in 331 

neurons in both species because gene targeting of Lkb1 in neurons led to reduction of 332 

sleep. In mice, with the additional advantage of EEG analysis, we find that LKB1 333 

regulates sleep need as indicated by reduced NREM δ power density in Lkb1 334 

knockdown mutant mice. 335 

Sleep is important for animals. Sleep regulation is accomplished through two 336 

processes: circadian and sleep homeostatic (Borbely 1982; Borbely et al. 2016). The 337 

circadian clock regulates the timing of sleep, and homeostatic process regulates the 338 

sleep drive. Molecular mechanisms of the circadian clock have been revealed through 339 

research in Drosophila and other organisms (Hendricks et al. 2000; Shaw et al. 2000; 340 

Allada and Chung 2010; Mohawk et al. 2012; Nitabach and Taghert 2008). Although 341 

many sleep-related genes have been identified in sleep regulation (Allada et al. 2017; 342 

Cirelli 2009; Jan et al. 2020), our understanding of the mechanisms underlying sleep 343 

homeostatic regulation remains limited (Allada et al. 2017; Donlea et al. 2017). 344 

 Multiple regions in Drosophila and mouse brains have been implicated in sleep 345 

regulation. In flies, sleep is regulated by several regions including: the ILNv and DN1 346 
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clock neurons which are important for circadian control of sleep (Chung et al. 2009; 347 

Kunst et al. 2014; Parisky et al. 2008; Shang et al. 2013; Shang et al. 2008; Sheeba et 348 

al. 2008). And the mushroom bodies (MBs), the dorsal of fan-shaped body (dFB), the 349 

ellipsoid body (EB), the pars intercerebralis (PI) and glia. (Chen et al. 2015; Crocker 350 

et al. 2010; Donlea et al. 2014; Donlea et al. 2011; Foltenyi et al. 2007; Guo et al. 351 

2011; Joiner et al. 2006; Liu et al. 2012; Liu et al. 2016; Park et al. 2014; Pimentel et 352 

al. 2016; Seugnet et al. 2011; Ueno et al. 2012; Yi et al. 2013). In mammals, sleep is 353 

regulated by monoaminergic, cholinergic, glutamatergic, and GABAergic neurons 354 

that are distributed in multiple regions including the brain stem, the preoptic 355 

hypothalamus, the lateral hypothalamus and the basal forebrain (Saper and Fuller 356 

2017; Scammell et al. 2017; Weber and Dan 2016). It will be interesting to investigate 357 

whether Lkb1 functions in all or a limited subset of neurons to regulate sleep. 358 

 Lkb1 as a master kinase can regulate the activities of ARKs by phosphorylating 359 

the site in the active T loop equivalent to AMPK-T172 (Lizcano et al. 2004). Because 360 

both AMPK and SIK3 are involved in sleep regulation, it will be interesting to 361 

investigate downstream kinases mediating the function of Lkb1 in sleep regulation. Is 362 

it SIK3, AMPK, or other members of the AMPK related kinases? Our findings of 363 

allele-specific genetic interactions between Lkb1 and Ampk suggest that they could be 364 

upstream and downstream of each other in regulating sleep. Because of the lethality of 365 

double mutation combination of Sik3 and lkb1, we can not rule out that Sik3 may also 366 

be downstream of Lkb1 in regulating Drosophila sleep. The 367 
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Ca2+/calmodulin-dependent protein kinase kinase-2 (CaMKK2, also known as 368 

CaMKKβ) could phosphorylate AMPKα−Τ172 (Anderson et al. 2008; Hawley et al. 369 

2005; Hurley et al. 2005; Woods et al. 2005), but CaMKK2 could not phosphorylate the 370 

equivalent sites in the other AMPK related kinases, including SIK3 (Fogarty et al. 371 

2010). It will be interesting to investigate whether and how CaMKK2 regulates sleep.  372 

In Drosophila, LKB1 functions through SIK3 which phosphorylates histone 373 

deacetylase 4 (HDAC4) to regulate lipid storage (Choi et al. 2015). It will be interesting 374 

to investigate whether HDAC4 is downstream of LKB1 in sleep regulation. 375 

More importantly, an important question for further studies is whether Lkb1 376 

regulation of sleep is related to its regulation of metabolism. Changes in energy 377 

homeostasis directly and reversibly influence the sleep/wake cycle (Collet et al. 2016). 378 

Some molecules involved in metabolism regulate sleep (Bjorness and Greene 2009; 379 

Gerstner et al. 2011; Grubbs et al. 2020; Nixon et al. 2015; Taheri et al. 2004; Thimgan 380 

et al. 2010). In Drosophila, starvation suppresses sleep without building up sleep drive 381 

(Thimgan et al. 2010). Lkb1 and its downstream components are involved in regulating 382 

metabolism, with examples such as LKB1-AMPK signaling in the liver regulating 383 

glucose homeostasis (Shaw et al. 2005), SIK3-HDAC4 regulating energy balance in 384 

Drosophila (Wang et al. 2011). Either LKB1 has two independent roles in sleep and 385 

metabolism or that its two roles are related.  386 
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Our recent in vitro biochemical discoveries of STE20 phosphorylation of AMPK 387 

and SIK3 (and other ARKs) raise more questions about physiological significance of 388 

any STE20 or any other ARK in sleep (Liu et al., 2022a, 2022b). 389 

 390 
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FIGURE LEGENDS 731 
 732 

Figure 1. Sleep phenotypes of Lkb1 knock-down mutant flies. (A) A diagram 733 

illustrating the Lkb1 insertion mutant lkb1T2. (B) Relative Lkb1 mRNA levels in 734 

lkb1T2/T2 (red), lkb1T2/+ (blue) and wt (black) flies. (C) Sleep profiles of lkb1T2/T2 (red, 735 

n=42), lkb1T2/+ (blue, n=44), and wt (black, n=44) flies in a 12 h light/12 h dark (LD) 736 

cycle. (D-G) Statistical analysis of sleep duration, sleep bout number, sleep bout 737 

duration and latency to sleep in lkb1T2/T2 (red, n=42), lkb1T2/+ (blue, n=44) and wt 738 

(black, n=44) flies. Open bars denote daytime, filled bars denote nighttime. (D) Sleep 739 

duration. Nighttime sleep durations of lkb1T2/T2 mutants was significantly less than 740 

those in lkb1T2/+ and wt flies. (E) Sleep bout number. Daytime sleep bout number of 741 

lkb1T2/T2 mutants was less than that of wt flies. (F) Sleep bout duration. Nighttime 742 

sleep bout duration of lkb1T2/T2 mutants was significantly less than those of lkb1T2/+ 743 

and wt flies. (G) Latency to sleep. Latency to sleep after light-off of lkb1T2/T2 mutants 744 

was significantly prolonged than lkb1T2/+ and wt flies. One-way ANOVA was used. 745 

n.s. denotes p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent standard 746 

error of the mean (SEM). 747 

 748 

Figure 2.  Rescue of sleep loss in lkb1T2/T2 by Lkb1. (A) A diagram of 749 

lkb1T2-Gal4: a cDNA for the yeast Gal4 gene inserted in the lkb1T2 knockdown 750 

mutants. (B) Relative Lkb1 mRNA levels in lkb1T2-Gal4 (blue), UAS-Lkb1; 751 

lkb1T2-Gal4 (red), UAS-Lkb1; lkb1T2 (yellow) and wt (black) flies. (C-G) In 752 
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lkb1T2-Gal4 homozygous flies, UAS-Lkb1 cDNA driven by Gal4 to rescue sleep 753 

phenotypes of lkb1 knockdown mutants. (C) Sleep profiles of UAS-Lkb1; 754 

lkb1T2-Gal4 (red, n=45), UAS-Lkb1; lkb1T2 (yellow, n=47), lkb1T2-Gal4 (blue, 755 

n=46) and wt (black, n=36) flies. (D-G) Statistical analysis of sleep duration, 756 

sleep bout number, sleep bout duration and latency to sleep in UAS-Lkb1; 757 

lkb1T2-Gal4 (red, n=45), UAS-Lkb1; lkb1T2 (yellow, n=47), lkb1T2-Gal4 (blue, 758 

n=46) and wt (black, n=36) flies. Open bars denote daytime, filled bars nighttime. 759 

(D) Sleep duration. Nighttime sleep duration of UAS-Lkb1; lkb1T2-Gal4 was 760 

similar to that of wt mutants, both significantly higher than UAS-Lkb1; lkb1T2 761 

and lkb1T2/T2-Gal4 flies. (E) Sleep bout number. Nighttime sleep bout number of 762 

UAS-Lkb1; lkb1T2-Gal4 was similar to the wt but significantly higher than 763 

UAS-Lkb1; lkb1T2 and lkb1T2-Gal4 flies. (F) Sleep bout duration. Nighttime 764 

sleep bout duration of UAS-Lkb1; lkb1T2-Gal4 was similar to the wt but 765 

significantly higher than UAS-Lkb1; lkb1T2 and lkb1T2-Gal4 flies. (G) Latency to 766 

sleep. Latency after light-off of UAS-Lkb1; lkb1T2-Gal4 was similar to the wt but 767 

significantly shorter than UAS-Lkb1; lkb1T2 and lkb1T2-Gal4 flies. One-way 768 

ANOVA was used. n.s. denotes p>0.05, * p<0.05, ** p<0.01, ***p<0.001. Error 769 

bars represent SEM. 770 

 771 

Figure 3.  Sleep phenotypes of mutants from whose neurons Lkb1 was targeted. 772 

(A) Sleep profiles of UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 (red, n=44), 773 
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UAS-Lkb1-sgRNA/57C10-Gal4 (blue, n=41), and 57C10-Gal4/+;+/UAS-Cas9 774 

(black, n=45) flies. (B-E) Statistical analysis of sleep duration, sleep bout number, 775 

sleep bout duration and latency to sleep in 776 

UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 (red, n=44), 777 

UAS-Lkb1-sgRNA/57C10-Gal4 (blue, n=41) and 57C10-Gal4/+;+/UAS-Cas9 778 

(black, n=45) flies. Open bars denote daytime, filled bars nighttime. (B) Sleep 779 

duration. Daytime and nighttime sleep duration of 780 

UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was significantly less than those of 781 

UAS-Lkb1-sgRNA/57C10-Gal4 and 57C10-Gal4/+;+/UAS-Cas9 flies. (C) Sleep 782 

bout number. Daytime and nighttime sleep bout numbers of 783 

UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was not significantly from those of 784 

UAS-Lkb1-sgRNA/57C10-Gal4 and 57C10-Gal4/+;+/UAS-Cas9 flies. (D) Sleep 785 

bout duration. Nighttime sleep bout duration of 786 

UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was significantly less than that of 787 

UAS-Lkb1-sgRNA/57C10-Gal4 and 57C10-Gal4/+;+/UAS-Cas9 flies. (E) 788 

Latency to sleep. Latency to sleep after light-off of 789 

UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was longer than that of 790 

57C10-Gal4/+;+/UAS-Cas9 which was not significantly different from that of 791 

UAS-Lkb1-sgRNA/57C10-Gal4 flies. One-way ANOVA was used. n.s. denotes 792 

p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM. 793 

 794 
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Figure 4.  Genetic interactions between lkb1 and ampk. (A) Sleep profiles of 795 

UAS-Ampk-T184E/57C10;lkb1T2 (red, n=19), 57C10;lkb1T2 (yellow, n=24), 796 

UAS-Ampk-T184E;lkb1T2 (blue, n=22) and wt (black, n=24) flies. (B) Sleep 797 

profiles of UAS-Ampk-T184A/57C10;lkb1T2 (red, n=24), 57C10;lkb1T2 (yellow, 798 

n=24), UAS-Ampk-T184A;lkb1T2 (blue, n=23) and wt (black, n=24) flies. (C) 799 

Sleep profiles of UAS-Ampk /57C10;lkb1T2 (red, n=24), 57C10;lkb1T2 (yellow, 800 

n=24), UAS-Ampk;lkb1T2 (blue, n=11) and wt (black, n=24) flies. (D-G) 801 

Statistical analysis of sleep duration, sleep bout number, sleep bout duration and 802 

latency to sleep in wt (black, n=24), 57C10;lkb1T2 (yellow, n=24), 803 

UAS-Ampk-T184E;lkb1T2 (blue, n=22), UAS-Ampk-T184E/57C10;lkb1T2 (red, 804 

n=19), UAS-Ampk-T184A;lkb1T2 (blue, n=23), 805 

UAS-Ampk-T184A/57C10;lkb1T2 (red, n=24), UAS-Ampk;lkb1T2 (blue, n=11) 806 

and UAS-Ampk /57C10;lkb1T2 (red, n=24) flies. Open bars denote daytime, filled 807 

bars nighttime. N.s. not shown. One-way ANOVA was used. n.s. denotes p>0.05, 808 

*p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM. 809 

 810 

Figure 5.  Genetic interactions between lkb1 and sik3. (A) Sleep profiles of 811 

lkb1T2 (red, n=45), Sik3-T196E-flag;lkb1T2 (dark red, n=46), Sik3-flag;lkb1T2 812 

(orange, n=48) , Sik3-T196E-flag (blue, n=45), Sik3-flag (dark blue, n=44) and 813 

wt (black, n=46) flies. (D-G) Statistical analysis of sleep duration, sleep bout 814 

number, sleep bout duration and latency to sleep in wt (black, n=46), Sik3-flag 815 
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(dark blue, n=44), Sik3-T196E-flag (blue, n=45), Sik3-flag;lkb1T2 (orange, n=48), 816 

Sik3-T196E-flag;lkb1T2 (dark red, n=46) and lkb1T2 (red, n=45) flies. Open bars 817 

denote daytime, filled bars nighttime. Statistics for groups Sik3-flag;lkb1T2 and 818 

Sik3-T196E-flag;lkb1T2 were presented. One-way ANOVA was used. n.s. 819 

denotes p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM. 820 

 821 

Figure 6.  Sleep phenotypes of lkb1 conditional knockout mice. (A) Levels of LKB1 822 

protein from Lkb1fl/fl mice injected with AAV-hSyn-Cre-GFP virus (Cre+ Lkb1fl/fl, 823 

n=4), Lkb1fl/fl mice injected with AAV-hSyn-GFP virus (GFP+ Lkb1fl/fl, n=3), Lkb1fl/+ 824 

mice injected with AAV-hSyn-Cre-GFP virus (Cre+ Lkb1fl/+, n=2) and Lkb1+/+ mice 825 

injected with AAV-hSyn-Cre-GFP virus (Cre+ Lkb1+/+, n=2). These mice were among 826 

those used for EEG recording and analysis. (B) Levels of LKB1 protein in individual 827 

mice (genotypes labelled: Cre+ Lkb1fl/fl, GFP+ Lkb1fl/fl, Cre+ Lkb1fl/+ and Cre+ Lkb1+/+. 828 

These mice were the same mice as those in (A) but presented individually. (C, E, G) 829 

Statistical analysis of wake duration, NREM duration and REM duration in Cre+ 830 

Lkb1fl/fl (red, n=10), GFP+ Lkb1fl/fl (yellow, n=5), Cre+ Lkb1fl/+ (blue, n=7) and Cre+ 831 

Lkb1+/+ (black, n=4) mice in a 12:12 LD cycle. White background denotes daytime, 832 

gray background nighttime. (C) Wake duration. Daytime wake duration of Cre+ 833 

Lkb1fl/fl mice was higher than those of GFP+ Lkb1fl/fl, Cre+ Lkb1fl/+ or Cre+ Lkb1+/+ 834 

mice. Nighttime wake duration of Cre+ Lkb1fl/fl mice was higher than that of GFP+ 835 

Lkb1fl/fl mice. (E) NREM duration. Daytime NREM duration of Cre+ Lkb1fl/fl mice 836 
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was lower than those of GFP+ Lkb1fl/fl, Cre+ Lkb1fl/+ and Cre+ Lkb1+/+ mice. 837 

Nighttime NREM duration of Cre+ Lkb1fl/fl mice was lower than that of GFP+ Lkb1fl/fl 838 

mice. (G) REM duration. Daytime and nighttime REM durations of Cre+ Lkb1fl/fl mice 839 

was not significantly different from those of GFP+ Lkb1fl/fl, Cre+ Lkb1fl/+ and Cre+ 840 

Lkb1+/+ mice. (D, F, H) EEG power spectrum of (D) WAKE, (F) NREM and (H) 841 

REM states in Cre+ Lkb1fl/fl (red, n=8), GFP+ Lkb1fl/fl (yellow, n=5), Cre+ Lkb1fl/+ 842 

(blue, n=6) and Cre+ Lkb1+/+ (black, n=4) mice. (I) NREM δ-power density of Cre+ 843 

Lkb1fl/fl (red, n=8), GFP+ Lkb1fl/fl (yellow, n=5), Cre+ Lkb1fl/+ (blue, n=6) and Cre+ 844 

Lkb1+/+ (black, n=4) mice. One-way ANOVA was used in C, E, G for comparison of 845 

Cre+ Lkb1fl/fl, Cre+ Lkb1fl/+ and Cre+ Lkb1+/+ mice. Unpaired t test was used in C, E, 846 

G for comparison of Cre+ Lkb1fl/fl and GFP+ Lkb1fl/fl mice. Two-way ANOVA 847 

followed by Turkey’s multiple comparisons test was used in D, F, H, I. n.s. denotes 848 

p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM. 849 

 850 

 851 
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