1 LKB1 Is Physiologically Required for Sleep from *Drosophila melanogaster* to the

- 2 Mus musculus
- 3
- Ziyi Liu^{*}, Lifen Jiang[¶], Chaoyi Li[¶], Chengang Li^{*}, Jingqun Yang^{*}, Jianjun Yu^{*}, Renbo
 Mao^{*}, and Yi Rao^{*,1}
- 6

7	*Peking University-Tsinghua University-National Institute of Biological Sciences
8	Joint Graduate Program, School of Life Sciences, PKU-IDG/McGovern Institute for
9	Brain Research, School of Chemistry and Molecular Engineering, School of
10	Pharmaceutical Sciences, Peking University, Beijing 100871, China; Chinese Institute
11	for Brain Research, Beijing; Capital Medical University; Changping Laboratory,
12	Beijing, China
13	[¶] Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong,
14	China.
15	
16	¹ Corresponding author (email: <u>yrao@pku.edu.cn</u>)
17	

- 18 Running title: LKB1 and Sleep in Flies and Mice
- 19 Keywords: Sleep, LKB1, Flies, Mice

© The Author(s) (2022). Published by Oxford University Press on behalf of the Genetics Society of America. All rights reserved. For permissions, please email: <u>journals.permissions@oup.com</u>.

20 ABSTRACT

21 Liver Kinase B1 (LKB1) is known as a master kinase for 14 kinases related to the 22 adenosine monophosphate (AMP)-activated protein kinase (AMPK). Two of them salt 23 inducible kinase 3 (SIK3) and AMPKa have previously been implicated in sleep 24 regulation. We generated loss-of-function (LOF) mutants for Lkb1 in both Drosophila 25 and mice. Sleep, but not circadian rhythms, was reduced in Lkb1-mutant flies and in 26 flies with neuronal deletion of Lkb1. Genetic interactions between Lkb1 and 27 Threonine to Alanine mutation at residue 184 of AMPK in Drosophila sleep or those 28 between Lkb1 and Threonine to Glutamic Acid mutation at residue 196 of SIK3 in 29 Drosophila viability have been observed. Sleep was reduced in mice after virally 30 mediated reduction of Lkb1 in the brain. Electroencephalography (EEG) analysis 31 showed that non-rapid eye movement (NREM) sleep and sleep need were both reduced 32 in Lkb1-mutant mice. These results indicate that LKB1 plays a physiological role in 33 sleep regulation conserved from flies to mice.

34

35 INTRODUCTION

36	Human Peutz-Jeghers syndrome (PJS) (Jeghers et al. 1949; Peutz 1921) is an autosomal
37	dominant disorder with gastrointestinal (GI) polyps and increased cancer risk of
38	multiple tissues (Tomlinson and Houlston 1997; Westerman et al. 1999). The gene
39	mutated in, and responsible for, PJS encodes the liver kinase B1 (LKB1, also known as
40	STK11) (Hemminki et al. 1998; Hemminki et al. 1997; Jenne et al. 1998). Lkb1 is thus
41	a tumor suppressor gene, mutated in multiple cancers, especially the GI (Bardeesy et al.
42	2002; Hearle et al. 2006; Jishage et al. 2002; Mehenni et al. 1998; Miyoshi et al. 2002)
43	and lung adenocarcinoma (Carretero et al. 2004; Gill et al. 2011; Ji et al. 2007;
44	Matsumoto et al. 2007; Sanchez-Cespedes et al. 2002; Skoulidis et al. 2015), cervical
45	cancer (Wingo et al. 2009), ovarian cancer (Tanwar et al. 2014), breast cancer (Hearle
46	et al. 2006; Sengupta et al. 2017; Shen et al. 2002), pancreatic cancer (Morton et al.
47	2010) and melanoma (Guldberg et al. 1999; Rowan et al. 1999).
48	LKB1 phosphorylates threonine 172 (T172) of the α subunit of adenosine
49	monophosphate (AMP)-activated protein kinase (AMPK α) (Hawley et al. 2003; Hong
50	et al. 2003; Lizcano et al. 2004; Sakamoto et al. 2005; Shaw et al. 2004; Shaw et al.
51	2005; Sutherland et al. 2003; Woods et al. 2003), and positively regulates the activity of
52	AMPK.
53	AMPK is a well-known kinase (Beg et al. 1973; Carling et al. 1989; Carling et al.
54	1987; Carlson and Kim 1973; Ferrer et al. 1985; Ingebritsen et al. 1978; Munday et al.
55	1988; Yeh and Kim 1980) with important physiological and pathological roles (Hardie

56	2014; Hardie et al. 2016; Herzig and Shaw 2018; Lopez and Dieguez 2014). The α , β
57	and γ subunits of AMPK form a heterotrimeric complex (Davies et al. 1994; Michell et
58	al. 1996; Mitchelhill et al. 1994). The catalytic α subunit is regulated by
59	phosphorylation at T172 of AMPK α 2 or T183 of AMPK α 1 (Hawley et al. 1996).
60	There are 12 additional mammalian AMPK-related kinases (ARKs), similar to the
61	α subunit of AMPK, all regulated at the site equivalent to AMPK-T172 (Lizcano et al.
62	2004). LKB1 and its associated proteins STE20-related adaptor (STRAD) and mouse
63	protein 25 (MO25) have been reported to phosphorylate all 14 ARKs (Lizcano et al.
64	2004), making LKB1 a master kinase for ARKs (Alessi et al. 2006; Lizcano et al. 2004;
65	Shackelford and Shaw 2009). We have recently found that more than 20 kinases in the
66	STE20 family of mammalian serine-threonine kinases could phosphorylate ARKs in
67	vitro, though the physiological roles of STE20 kinases in ARK phosphorylation remain
68	unknown (Liu et al., 2022a, 2022b).
69	Some ARKs have been reported to regulate sleep. In mice, inhibitors of AMPK
70	were found to decrease sleep, whereas activators of AMPK were found to increase
71	sleep (Chikahisa et al. 2009). In flies, knockdown of AMPK β in neurons decreased the
72	total amount of sleep and resulted in fragmented sleep (Nagy et al. 2018). Knockdown
73	of AMPK α in a specific pair of neurons suppressed sleep (Yurgel et al. 2019).
74	Studies in mice have shown that sleep was increased in gain-of-function (GOF)
75	mutations in the salt inducible kinase (SIK) 3 (Funato et al. 2016), and sleep need was

reduced in GOF mutants of SIK 1, 2 and 3 (Funato et al. 2016; Honda et al. 2018; Park

et al. 2020). Sleep was also decreased when SIK3 was downregulated in flies (Funato et
al. 2016). Here we investigated the functional role of LKB1 in regulating sleep in flies
and mice.

80

81 MATERIALS AND METHODS

Fly lines and rearing conditions: Flies were reared on standard corn meal at 25°C,
60% humidity and kept in 12 hours (h) light/12 h dark (LD) conditions. 57C10-Gal4,
nos-phiC31, hs-Cre on X were from the Bloomington Stock Center. vas-Cas9 was a
gift from Dr. J. Ni (Tsinghua University, Beijing). UAS-Cas9, UAS-Ampk,
UAS-Ampk-T184A, UAS-Ampk-T184E, Sik3-flag, Sik3--T196A-flag,
Sik3-T196E-flag flies were from our laboratory.

Flies used in behavioral assays were backcrossed into our isogenized Canton S background for 7 generations. All results of sleep analysis in this paper were obtained from female flies.

91 Generation of KO, KI and transgenic lines: Total RNA was extracted from isoCS 92 by TRIzol reagent (Invitrogen). Using the PrimeScript II 1st Strand cDNA Synthesis 93 Kit (Takara), we reverse-transcribed the extracted mRNA into cDNA. The UAS-Lkb1 94 flies was constructed by inserting the coding sequence of CG9374 amplified from 95 cDNA into the pACU2 plasmid (a gift from the Jan Lab at UCSF) (Han et al. 2011) 96 before being inserted into the attP40 site.

97 The UAS-Lkb1-sgRNA construct was designed by inserting the sgRNAs into
 98 pMt:sgRNA^{3XEF} vectors based on pACU2, with rice tRNA separating the different

9	9
	/

sgRNAs. CRISPR-Gold website was used to design 3 sgRNAs of Lkb1 (Figure S3)

100 (Chu et al. 2016; Poe et al. 2019). The construct was inserted into the attP40 site.

101 KO and KI lines were generated as described previously (Deng et al. 2019). 102 Knockout flies were generated with the CRISPR/Cas9 system. Two different sgRNAs 103 were constructed with U6b-sgRNA plasmids. The 5' homologous arm and the 3' 104 homologous arm of ~2kb amplified from the wt fly genome were inserted into a 105 pBSK plasmid for homologous recombination repair. The cassette of attP-3P3-RFP 106 was introduced in the middle. sgRNA plasmids and the donor plasmids were injected 107 into vas-Cas9 embryos to introduce attP-3P3-RFP into the genome at the region of 108 interest and replaced it by homologous recombination. 3P3-RFP served as a marker to 109 screen for the correct flies. Primers across the homologous arms were designed to 110 verify the sequences by PCR and DNA sequencing. attP site was introduced into the 111 genome with 3P3-RFP-LoxP. For KI files, the nos-phiC31 virgin females were first 112 crossed with knock-out males and the pBSK plasmid inserted with 113 attB-T2A-Gal4-miniwhite-LoxP cassette was injected into the female embryos. 114 Miniwhite serves as a marker to screen for the correct flies, which could be excised by 115 the Cre/LoxP system. Primers were designed to verify the sequence by PCR and DNA 116 sequencing.

Quantitative PCR: Total RNA was extracted from 30 flies of 5-7 days old by TRIzol
reagent (Invitrogen). The genomic template was removed using DNase (Takara).
cDNA was reverse- transcribed using Takara's PrimeScript II 1st Strand cDNA

120	synthesis kit (Takara). Quantitative PCR was carried out with TransStart Top Green
121	qPCR SuperMix kit (TransGen) in the Bio-Rad PCR system (CFX96 Touch Deep
122	Well). The sequences of primers used to detect Lkb1 and RP49(endogenous control)
123	mRNA are:

- 124 Lkb1-F: 5' -GCCGTCAAGATCCTGACTA-3'
- 125 Lkb1-R: 5'-CTCCGCTGGACCAGATG-3'
- 126 Rp49-F: 5'-CGACGCTTCAAGGGACAGTATC-3'
- 127 Rp49-R: 5'-TCCGACCAGGTTACAAGAACTCTC-3'

128 Drosophila sleep analysis: Drosophila sleep analysis was performed as described 129 previously (Dai et al. 2019; Qian et al. 2017). 5-7 days old flies were placed in a 130 65mm x 5mm clear glass tube with one end containing food and the other end 131 plugging with cotton. All flies were recorded by video-cameras. Before sleep 132 measurement, flies were entrained to an LD cycle at 25°C, 60% humidity for at least 133 two days, and infrared LED light was used to ensure constant illumination when lights 134 off. Immobility longer than 5 minutes was defined as one sleep event (Hendricks et al. 135 2000; Shaw et al. 2000). Information of fly location was tracked and sleep parameters 136 were analyzed using Matlab (Mathworks), from which dead flies were removed. 137 Sleep duration, sleep bout duration, sleep bout number and sleep latency for each LD 138 were analyzed. Each experiment was repeated at least three times.

139 Drosophila circadian analysis: Flies were reared and recorded in the same condition
140 as sleep assay as described in papers from our lab (Dai et al. 2021; Qian et al. 2017),

except that the condition was constant darkness. 6-8 days activity was measured and
calculated in ActogramJ (Klarsfeld et al. 2003). Rhythmic strength, power and period
were calculated by Chi-square method.

144 Immunoblot analysis: Mouse brains were quickly dissected and washed with 145 phosphate buffer saline (PBS) on ice. Lysis buffer (20mM HEPES, 10mM KCl, 146 1.5mM MgCl₂, 1mM EDTA, 1mM EGTA, 1mM DTT, freshly supplemented with a 147 protease and phosphatase inhibitors cocktail) were used to homogenize brains by homogenizer (Wiggens, D-500 pro) at 4°C. Brain homogenates were centrifuged at 148 149 14,000 revolution per minutes (rpm) for 15 minutes at 4°C. The supernatant was 150 transferred to a new microtube and quantified with bicinchoninic acid assay (Thermo 151 Fisher, 23225). The supernatant was analyzed by SDS-PAGE and proteins were 152 transferred to a nitrocellulose membrane (GE Healthcare, #BA85). Membranes were 153 incubated for 1 h in a blocking solution (Tris-buffered saline (TBS) containing 0.1% 154 Tween-20, 5% milk). Primary antibodies were anti-LKB1 (cell signaling, #3047) and 155 anti-ACTIN (Santa Cruz, sc-8342).

Retro-orbital injection in mice: Mice were reared at controlled temperature and
humidity conditions with 12 h light/ 12 h dark cycle. Food and water were provided
ad libitum. Lkb1^{fl/fl} mice were from the Jackson Laboratory (JAX #014143). They
contained loxP sites flanking exons 3-6 of Lkb1 gene (Nakada et al. 2010).
AAV-PHP.eB-hSyn-Cre-GFP and AAV-PHP.eB-hSyn-GFP virus were from Chinese

161 Institute for Brain Research, Beijing. All results of sleep analysis in this paper were162 obtained from female mice.

0.2 ml/10 g Avertin was injected intraperitoneally into the mice for
anesthetization. Rodent eyes were protruded by gentle downward pressure to the skin
on the dorsal and ventral sides of the eye. The operator inserted the needle beveled
downward into the retro-orbital sinus at the medial corner of the eye (Yardeni et al.
2011). The AAV-PHP.eB virus was injected for whole brain infection (Chan et al.
2017).

169 Mouse sleep analysis: Mouse sleep analysis was described in a previous article from 170 our laboratory (Zhang et al. 2018). Eight-week-old mice were selected for 171 retro-orbital injection. One week after viral injection, EEG and EMG electrode 172 implantation procedures were performed. Mice were allowed to recover for more than 173 5 days individually and placed in a recording cage and tethered to an omni-directional 174 arm (RWD Life Science Inc.) with connection cable for 2 days of habituation before 175 recording. EEG and EMG data were recorded with custom software at a sampling 176 frequency of 200 Hz for 2 consecutive days to analyze sleep/wake behavior under 177 baseline conditions. The recording chamber was maintained at 12 h LD cycle and 178 controlled temperature (24-25°C). EEG/EMG data were initially processed by 179 Accusleep (Barger et al. 2019) before manual correction in SleepSignTM to improve 180 accuracy. WAKE was scored as high amplitude and variable EMG and fast and low 181 amplitude EEG. NREM was scored as high amplitude δ (1-4 Hz) frequency EEG and 182 low EMG tonus. REM was scored as a complete silent of EMG signals and low
183 amplitude high frequency θ (6-9 Hz)-dominated EEG signal.

184 For power spectrum analysis, EEG was subjected to fast Fourier transform (FFT) analysis with a Hamming window method by SleepSignTM, yielding power spectra 185 186 between 0-25 Hz with a 0.39Hz bin resolution. Epochs containing movement artifacts 187 were marked, included in sleep duration analysis but excluded from the power spectra 188 analysis. Power spectra for each vigilance state represents the mean power distribution 189 of this state during a 24-h baseline recording. The δ -power density of NREMS per hour 190 represents the average of δ -power density as a percentage of δ -band power (1-4 Hz) to 191 total power (0-25 Hz) for each NREM epoch contained in an hour.

192

- 194 Differences in means between samples larger than two groups were analyzed using
- 195 ordinary One-way ANOVA. Unpaired t test was used for two groups comparison.
- 196 Power spectrum between different lines was compared by two-way ANOVA followed
- 197 by Turkey's multiple comparisons test. Ns denotes p>0.05, * denotes p<0.05, **
- 198 denotes p<0.01 and *** denotes p<0.001 for all statistical results in this paper.

199

200 RESULTS

201 Sleep phenotypes of Drosophila Lkb1 mutants: Null mutants for Lkb1 are lethal in
202 Drosophila (Martin and St Johnston 2003). We had generated a Lkb1 knockout

203	("lkb1 ^{T1} ") line (Figure S1A, S3B) and found that lkb1 ^{T1/T1} mutation was lethal in the
204	pupa stage. The level of Lkb1 mRNA was reduced in the heterozygous lkb1 ^{T1/+} flies
205	(Figure S1B). We then tested whether the heterozygous lkb1 ^{T1} had any phenotype in
206	sleep using flies kept in 12 hours (h) light/ 12 h dark (LD) cycles (Figure S1C). While
207	lkb1 ^{T1/+} flies were not significantly different from the wild type (wt) flies in sleep bout
208	numbers (Figure S1E), or daytime sleep duration (Figure S1D), daytime sleep bout
209	duration (Figure S1F), lkb1 ^{T1/+} flies showed significantly lower nighttime sleep
210	duration (Figure S1D), nighttime sleep bout duration (Figure S1F) and longer latency to
211	sleep (Figure S1G). Thus, there was dosage-sensitive physiological requirement of
212	Lkb1 in nighttime sleep.
213	We tried to, and succeeded in, generating lkb1 ^{T2} , a hypomorphic mutation for Lkb1

in flies (Figure 1A, S3A and S3B). Lkb1 mRNA was significantly reduced in lkb1^{T2/+} 214 and lkb1^{T2/T2} flies (Figure 1B). During the day, lkb1^{T2/T2} flies were not significantly 215 different from the lkb1^{T2/+} and wt flies in sleep duration (Figure 1C, 1D), sleep bout 216 217 number (Figure 1E), sleep bout duration (Figure 1F) or latency to sleep (Figure 1G). During the night, not only lkb1^{T2/T2} flies showed significantly reduced sleep duration 218 219 (Figure 1C, 1D), highly reduced sleep bout duration (Figure 1F) and highly increased latency (Figure 1G) than the wt flies, but also the heterozygous lkb1^{T2/+} flies were 220 221 significantly different from the wt flies in all these parameters (Figure 1C to 1G), 222 indicating a dosage sensitive requirement for Lkb1.

We examined the phenotypes of $lkb1^{T1/T2}$. Consistent with the $lkb1^{T2/T2}$, the mRNA levels of Lkb1 were significantly reduced in $lkb1^{T1/T2}$ compared to wt, $lkb1^{T1/+}$ and $lkb1^{T2/+}$, and even lower than that in $lkb1^{T2/T2}$ (Figure S2A).

The sleep phenotype in $lkb1^{T1/T2}$ flies was also consistent with $lkb1^{T2/T2}$, with highly reduced nighttime sleep duration (Figure S2B, S2C), highly reduced sleep bout duration (Figure S2E) and highly increased latency to sleep (Figure S2F), when compared with wt, $lkb1^{T1/+}$ and $lkb1^{T2/+}$ flies.

230 Results of sleep analysis of $lkb1^{T1/+}$, $lkb1^{T2/+}$, $lkb1^{T2/T2}$, and $lkb1^{T1/T2}$ mutant flies 231 all consistently support that Lkb1 plays a physiological role in promoting sleep.

232 Rescue of sleep phenotypes by Lkb1 in flies: We inserted the sequence of the yeast transcription factor Gal4 into the lkb1^{T2} mutant flies, flanking the lkb1 promoter, and 233 obtained lkb1^{T2}-Gal4 flies (Figure 2A). We also generated UAS-Lkb1 flies in which 234 235 the Lkb1 coding sequence (CDS) was expressed under the control of the upstream 236 activation sequence (UAS) (Brand and Perrimon 1993). Because Gal4 protein binds to 237 the UAS, the expression of Lkb1 in flies resulting from the crosses between lkb1^{T2}-Gal4 flies and UAS-Lkb1 flies would be under the control of the endogenous 238 Lkb1 promoter. Indeed, expression of Lkb1 mRNA was restored when lkb1^{T2}-Gal4 and 239 240 UAS-Lkb1 were present in the same flies (Figure 2B), whereas Lkb1 mRNA was less in wt flies. UAS-Lkb1;lkb1^{T2/T2} mutant flies, and lkb1^{T2}-Gal4/lkb1^{T2}-Gal4 flies than 241 242 that in the wt. UAS-Lkb1 alone could not restore Lkb1 mRNA expression level to that 243 in wt flies (Figure 2B).

244	Both daytime and nighttime sleep durations were less in lkb1 ^{T2} -Gal4/ lkb1 ^{T2} -Gal4/
245	flies than those in wt flies (Figure 2C). Introduction of UAS-Lkb1 in lkb1 ^{T2/T2} flies or
246	lkb1 ^{T2} -Gal4 alone could not restore sleep. When both lkb1 ^{T2} -Gal4 and UAS-Lkb1 were
247	present, nighttime sleep durations were restored (Figure 2D). Nighttime sleep bout
248	number, nighttime sleep bout duration and nighttime latency were restored when both
249	lkb1 ^{T2} -Gal4 and UAS-Lkb1 were present, but not when lkb1 ^{T2} -Gal4 or UAS-Lkb1
250	alone was present (Figure 2E, 2F and 2G).
251	These results support that the sleep phenotypes of $lkb1^{T2/T2}$ were attributable to the
252	reduction of Lkb1 mRNA expression in these flies.
253	Sleep phenotypes of flies carrying neuronal deletion of the Lkb1 gene: To
254	determine whether Lkb1 functions in neurons, we used the CRISPR-Cas9 system to
255	delete Lkb1 from neurons specifically (Figure S4). A pan-neuronal Gal4 driver
256	(57C10-Gal4) was used to control the expression of small guide RNA (sgRNA)
·	

(57C10-Gal4) was used to control the expression of small guide RNA (sgRNA)
targetting Lkb1 in neurons. Compared to 57C10-Gal4>UAS-Cas9 alone or
57C10-Gal4>UAS-Lkb1-sgRNA alone, when both UAS-Cas9 and UAS-Lkb1-sgRNA
were present in flies, nighttime sleep duration (Figure 3B) and nighttime sleep bout
duration (Figure 3D) were significantly reduced and nighttime sleep latency
significantly lengthened (Figure 3E). Daytime sleep duration, bout number, bout
duration and latency were not significantly affected by neuronal gene targeting of Lkb1
(Figure 3B, 3C, 3D and 3E).

264	We also investigated any potential effect that overexpression of Lkb1 in neurons
265	might cause (Figure S5A). We detected no phenotype resulting from neuronal
266	overexpression of Lkb1 on daytime and nighttime sleep duration, sleep bout number,
267	sleep bout duration or latency (Figure S5B, S5C, S5D, S5E and S5F).
268	In all three series of experiments (Figures 1, 2 and 3), nighttime sleep phenotypes
269	were more obvious than daytime sleep phenotypes. These results strongly indicate that
270	Lkb1 expression in neurons are required physiologically for sleep, especially nighttime
271	sleep.
272	Genetic interactions between Lkb1 and Ampk or Sik3 in flies: To examine
273	potential genetic interactions of Lkb1 with either Ampk or Sik3, we combined the
274	LOF Lkb1 mutation lkb1 ^{T2} with specific point mutations in either Ampk or Sik3.
275	The regulatory site T184 in Drosophila AMPK and T196 in Drosophila SIK3
276	were equivalent to T172 of mammalian AMPK2 and T221 of mammalian SIK3,
277	important for their activities. When the endogenous T184 in fly AMPK was mutated
278	to alanine (A) or glutamic acid (E), flies were lethal. We therefore introduced T184A
279	and T184E mutations into an Ampk transgene whose expression was controlled by
280	UAS. We introduced UAS-Ampk, UAS-Ampk-T184A, and UAS-Ampk-T184E into
281	lkb1 ^{T2/T2} flies and used a pan-neuronal driver to express them in neurons (Figure 4).
282	Neuronal overexpression of Ampk-T184E (Figure 4A) and UAS-Ampk (Figure 4C)
283	in lkb1 ^{T2} flies did not significantly change the sleep phenotypes of lkb1 ^{T2/T2} flies, but

neuronal overexpression of UAS-Ampk-T184A (Figure 4B) in lkb1^{T2/T2} flies further
decreased nighttime sleep duration.

Point mutations of Sik3-flag, Sik3-T196A-flag and Sik3-T196E-flag were 286 287 constructed in Drosophila. When the endogenous T196 in Sik3 was mutated to A or E, we could get homozygous flies. Upon crossing to lkb1^{T2/T2}, Sik3-T196A-flag;lkb1^{T2/T2} 288 were homozygous lethal. The cross of Sik3-T196E-flag into the lkb1^{T2/T2} background 289 290 generated viable flies, with no detectable change in sleep (Figure 5). 291 Allele-specific genetic interactions between Lkb1 and Ampk in sleep, or between 292 Lkb1 and Sik3 in viability, suggest, but do not prove, regulatory relationships between 293 Lkb1 and Ampk in sleep or Sik3 in viability. 294 Circadian rhythm in Lkb1 mutant flies: The transcription factor differentiated 295 embryo-chondrocyte 1 (DEC1) regulates circadian rhythm and can negatively regulate 296 the transcription of Lkb1 and subsequently reduce AMPK activity (Sato et al. 2015). 297 We tested whether the circadian rhythm was affected in Lkb1 mutant flies. Lkb1 298 mutant flies were not different from wt flies in period length (Figure S7B). Relative rhythmic power was increased in lkb1^{T2/+} and lkb1^{T2/T2} mutants than wt flies. (Figure 299 300 S7). 301 Sleep phenotypes in Lkb1 conditional knockout mice: To investigate potential involvement of Lkb1 in regulating sleep of mammalian animals, we obtained Lkb1^{fl/fl} 302 303 mice in which the loxP sites flanked exons 3 to 6 of the Lkb1 gene (Nakada et al. 2010).

304 To delete the Lkb1 gene from these mice, we injected adeno-associated viral (AAV)

constructs expressing either the Cre recombinase together with the green fluorescent
protein (GFP) or GFP alone to infect the mouse brain. Cre-GFP or GFP was under the
control of a neuronal specific promoter human Synapsin I (hSyn) (in
AAV-PHP.eB-hSyn-Cre-GFP or AAV-PHP.eB-hSyn-GFP).

We analyzed the expression of LKB1 protein in mice (Figure 6A, 6B). Injection of Cre-GFP expressing virus into wt or Lkb1^{fl/+} mice did not reduce LKB1 protein expression in the brain. Neither did injection of only GFP expressing virus into Lkb1^{fl/fl} mice. This conclusion was reached by examination of either several mouse brains combined (Figure 6A), or individual mouse brains (Figure 6B).

Functionally, only when the Cre-GFP expressing virus was injected into Lkb1^{fl/fl} mice, wake duration was significantly increased during daytime (Figure 6C, S6A), non-rapid eye movement (NREM) sleep duration was significantly decreased during daytime (Figure 6E, S6B). Controls (Cre-GFP injection into wt or Lkb1^{fl/+} mice, GFP injection into Lkb1^{fl/fl} mice) did not significantly changed any sleep phenotypes.

Rapid eye movement (REM) sleep duration was not significantly affected by
Cre-GFP injection into Lkb1^{fl/fl} mice (Figure 6G, S6C).

Power density in the 1-4 Hz range (δ power density) of NREM is a commonly accepted indicator of sleep need (Borbely 1982; Borbely et al. 1981; Daan et al. 1984; Dijk et al. 1987; Franken et al. 2001; Tobler and Borbely 1986; Werth et al. 1996). We found that NREM δ power density was significantly reduced when the Cre-GFP expressing virus was injected into Lkb1^{fl/fl} mice (Figure 6F). Analysis over 24 h indicated that significant reduction was observed over most of the daily cycle (Figure6I).

328

329 **DISCUSSION**

Our results indicate that LKB1 is required for sleep regulation: it plays an important and conserved role by promoting sleep in both flies and mice. LKB1 plays this role in neurons in both species because gene targeting of Lkb1 in neurons led to reduction of sleep. In mice, with the additional advantage of EEG analysis, we find that LKB1 regulates sleep need as indicated by reduced NREM δ power density in Lkb1 knockdown mutant mice.

336 Sleep is important for animals. Sleep regulation is accomplished through two 337 processes: circadian and sleep homeostatic (Borbely 1982; Borbely et al. 2016). The 338 circadian clock regulates the timing of sleep, and homeostatic process regulates the 339 sleep drive. Molecular mechanisms of the circadian clock have been revealed through 340 research in Drosophila and other organisms (Hendricks et al. 2000; Shaw et al. 2000; 341 Allada and Chung 2010; Mohawk et al. 2012; Nitabach and Taghert 2008). Although 342 many sleep-related genes have been identified in sleep regulation (Allada et al. 2017; 343 Cirelli 2009; Jan et al. 2020), our understanding of the mechanisms underlying sleep 344 homeostatic regulation remains limited (Allada et al. 2017; Donlea et al. 2017).

Multiple regions in Drosophila and mouse brains have been implicated in sleep
regulation. In flies, sleep is regulated by several regions including: the ILNv and DN1

347	clock neurons which are important for circadian control of sleep (Chung et al. 2009;
348	Kunst et al. 2014; Parisky et al. 2008; Shang et al. 2013; Shang et al. 2008; Sheeba et
349	al. 2008). And the mushroom bodies (MBs), the dorsal of fan-shaped body (dFB), the
350	ellipsoid body (EB), the pars intercerebralis (PI) and glia. (Chen et al. 2015; Crocker
351	et al. 2010; Donlea et al. 2014; Donlea et al. 2011; Foltenyi et al. 2007; Guo et al.
352	2011; Joiner et al. 2006; Liu et al. 2012; Liu et al. 2016; Park et al. 2014; Pimentel et
353	al. 2016; Seugnet et al. 2011; Ueno et al. 2012; Yi et al. 2013). In mammals, sleep is
354	regulated by monoaminergic, cholinergic, glutamatergic, and GABAergic neurons
355	that are distributed in multiple regions including the brain stem, the preoptic
356	hypothalamus, the lateral hypothalamus and the basal forebrain (Saper and Fuller
357	2017; Scammell et al. 2017; Weber and Dan 2016). It will be interesting to investigate
358	whether Lkb1 functions in all or a limited subset of neurons to regulate sleep.
359	Lkb1 as a master kinase can regulate the activities of ARKs by phosphorylating
360	the site in the active T loop equivalent to AMPK-T172 (Lizcano et al. 2004). Because
361	both AMPK and SIK3 are involved in sleep regulation, it will be interesting to
362	investigate downstream kinases mediating the function of Lkb1 in sleep regulation. Is
363	it SIK3, AMPK, or other members of the AMPK related kinases? Our findings of
364	allele-specific genetic interactions between Lkb1 and Ampk suggest that they could be
365	upstream and downstream of each other in regulating sleep. Because of the lethality of
366	double mutation combination of Sik3 and lkb1, we can not rule out that Sik3 may also
367	be downstream of Lkb1 in regulating Drosophila sleep. The

368	Ca ²⁺ /calmodulin-dependent protein kinase kinase-2 (CaMKK2, also known as
369	CaMKK β) could phosphorylate AMPK α -T172 (Anderson et al. 2008; Hawley et al.
370	2005; Hurley et al. 2005; Woods et al. 2005), but CaMKK2 could not phosphorylate the
371	equivalent sites in the other AMPK related kinases, including SIK3 (Fogarty et al.
372	2010). It will be interesting to investigate whether and how CaMKK2 regulates sleep.
373	In Drosophila, LKB1 functions through SIK3 which phosphorylates histone
374	deacetylase 4 (HDAC4) to regulate lipid storage (Choi et al. 2015). It will be interesting
375	to investigate whether HDAC4 is downstream of LKB1 in sleep regulation.
376	More importantly, an important question for further studies is whether Lkb1
377	regulation of sleep is related to its regulation of metabolism. Changes in energy
378	homeostasis directly and reversibly influence the sleep/wake cycle (Collet et al. 2016).
379	Some molecules involved in metabolism regulate sleep (Bjorness and Greene 2009;
380	Gerstner et al. 2011; Grubbs et al. 2020; Nixon et al. 2015; Taheri et al. 2004; Thimgan
381	et al. 2010). In Drosophila, starvation suppresses sleep without building up sleep drive
382	(Thimgan et al. 2010). Lkb1 and its downstream components are involved in regulating
383	metabolism, with examples such as LKB1-AMPK signaling in the liver regulating
384	glucose homeostasis (Shaw et al. 2005), SIK3-HDAC4 regulating energy balance in
385	Drosophila (Wang et al. 2011). Either LKB1 has two independent roles in sleep and
386	metabolism or that its two roles are related.

- 388 and SIK3 (and other ARKs) raise more questions about physiological significance of
- any STE20 or any other ARK in sleep (Liu et al., 2022a, 2022b).
- 390
- 391

392 DATA AVAILABILITY STATEMENT

393 Strains and plasmids are available upon request. All data necessary for confirming the

394 conclusions of the article are present within the article and its supplementary data.

395

396 ACKNOWLEDGEMENT

We are grateful to Dr. Bowen Deng for Ampk flies, to Ping-ping Yan, Lan Wang and
Yong-hui Zhang for technical assistance, to Drs. Wei Yang and En-xin Zhou for
Drosophila video tracing programs, to Dan Wang for mouse rearing, to members of the
Rao lab for discussion, to the Bloomington Drosophila Stock Center for flies, to the
Jackson Laboratory for mice, to CIBR, Peking-Tsinghua Center for Life Sciences,
IDG/McGovern Institute for Brain Research at Peking University and Changping
Laboratory for support.

405 LITERATURE CITED

406	
407	Alessi DR, Sakamoto K, Bayascas JR. 2006. Lkb1-dependent signaling pathways. Annu Rev Biochem.
408	75:137-163.
409	Allada R, Chung BY. 2010. Circadian organization of behavior and physiology in drosophila. Annu Rev
410	Physiol. 72:605-624.
411	Allada R, Cirelli C, Sehgal A. 2017. Molecular mechanisms of sleep homeostasis in flies and mammals.
412	Cold Spring Harb Perspect Biol. 9(8).
413	Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, Witters LA, Kemp BE, Means AR.
414	2008. Hypothalamic camkk2 contributes to the regulation of energy balance. Cell Metab.
415	7(5):377-388.
416	Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE, Loda M, Carrasco DR,
417	DePinho RA. 2002. Loss of the lkb1 tumour suppressor provokes intestinal polyposis but
418	resistance to transformation. Nature. 419(6903):162-167.
419	Barger Z, Frye CG, Liu D, Dan Y, Bouchard KE. 2019. Robust, automated sleep scoring by a compact
420	neural network with distributional shift correction. Plos One. 14(12):e0224642.
421	Beg ZH, Allmann DW, Gibson DM. 1973. Modulation of 3-hydroxy-3-methylglutaryl coenzyme a
422	reductase activity with camp and wth protein fractions of rat liver cytosol. Biochem Biophys
423	Res Commun. 54(4):1362-1369.
424	Bjorness TE, Greene RW. 2009. Adenosine and sleep. Curr Neuropharmacol. 7(3):238-245.
425	Borbely AA. 1982. A two process model of sleep regulation. Hum Neurobiol. 1(3):195-204.
426	Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D. 1981. Sleep deprivation: Effect on sleep
427	stages and eeg power density in man. Electroencephalogr Clin Neurophysiol. 51(5):483-495.
428	Borbely AA, Daan S, Wirz-Justice A, Deboer T. 2016. The two-process model of sleep regulation: A
429	reappraisal. J Sleep Res. 25(2):131-143.
430	Brand AH, Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and generating
431	dominant phenotypes. Development. 118(2):401-415.
432	Carling D, Clarke PR, Zammit VA, Hardie DG. 1989. Purification and characterization of the
433	amp-activated protein-kinase - copurification of acetyl-coa carboxylase kinase and
434	3-hydroxy-3-methylglutaryl-coa reductase kinase-activities. Eur J Biochem. 186(1-2):129-136.
435	Carling D, Zammit VA, Hardie DG. 1987. A common bicyclic protein-kinase cascade inactivates the
436	regulatory enzymes of fatty-acid and cholesterol-biosynthesis. Febs Letters. 223(2):217-222.
437	Carlson CA, Kim KH. 1973. Regulation of hepatic acetyl coenzyme a carboxylase by phosphorylation
438	and dephosphorylation. J Biol Chem. 248(1):378-380.
439	Carretero J, Medina PP, Pio R, Montuenga LM, Sanchez-Cespedes M. 2004. Novel and natural knockout
440	lung cancer cell lines for the lkb1/stk11 tumor suppressor gene. Oncogene.
441	23(22):4037-4040.
442	Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sanchez-Guardado L, Lois C, Mazmanian SK,
443	Deverman BE et al. 2017. Engineered aavs for efficient noninvasive gene delivery to the
444	central and peripheral nervous systems. Nat Neurosci. 20(8):1172-1179.
445	Chen WF, Maguire S, Sowcik M, Luo W, Koh K, Sehgal A. 2015. A neuron-glia interaction involving gaba
446	transaminase contributes to sleep loss in sleepless mutants. Mol Psychiatry. 20(2):240-251.

447 Chikahisa S, Fujiki N, Kitaoka K, Shimizu N, Sei H. 2009. Central ampk contributes to sleep homeostasis 448 in mice. Neuropharmacology. 57(4):369-374. 449 Choi S, Lim DS, Chung J. 2015. Feeding and fasting signals converge on the lkb1-sik3 pathway to 450 regulate lipid metabolism in drosophila. PLoS Genet. 11(5):e1005263. 451 Chu VT, Graf R, Wirtz T, Weber T, Favret J, Li X, Petsch K, Tran NT, Sieweke MH, Berek C et al. 2016. 452 Efficient crispr-mediated mutagenesis in primary immune cells using crisprgold and a c57bl/6 453 cas9 transgenic mouse line. P Natl Acad Sci USA. 113(44):12514-12519. 454 Chung BY, Kilman VL, Keath JR, Pitman JL, Allada R. 2009. The gaba(a) receptor rdl acts in peptidergic 455 pdf neurons to promote sleep in drosophila. Curr Biol. 19(5):386-390. 456 Cirelli C. 2009. The genetic and molecular regulation of sleep: From fruit flies to humans. Nat Rev 457 Neurosci. 10(8):549-560. 458 Collet TH, van der Klaauw AA, Henning E, Keogh JM, Suddaby D, Dachi SV, Dunbar S, Kelway S, Dickson 459 SL, Farooqi IS et al. 2016. The sleep/wake cycle is directly modulated by changes in energy 460 balance. Sleep. 39(9):1691-1700. 461 Crocker A, Shahidullah M, Levitan IB, Sehgal A. 2010. Identification of a neural circuit that underlies 462 the effects of octopamine on sleep:Wake behavior. Neuron. 65(5):670-681. 463 Daan S, Beersma DG, Borbely AA. 1984. Timing of human sleep: Recovery process gated by a circadian 464 pacemaker. Am J Physiol. 246(2 Pt 2):R161-183. 465 Dai X, Zhou E, Yang W, Mao R, Zhang W, Rao Y. 2021. Molecular resolution of a behavioral paradox: 466 Sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types 467 in drosophila. Sleep. 44(7). 468 Dai XM, Zhow EX, Yang W, Zhang XH, Zhang WX, Rao Y. 2019. D-serine made by serine racemase in 469 drosophila intestine plays a physiological role in sleep. Nat Commun. 10. 470 Davies SP, Hawley SA, Woods A, Carling D, Haystead TAJ, Hardie DG. 1994. Purification of the 471 amp-activated protein-kinase on atp-gamma-sepharose and analysis of its subunit structure. 472 Eur J Biochem. 223(2):351-357. 473 Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, Xu R, Mao R, Zhou E, Zhang W et al. 2019. Chemoconnectomics: 474 Mapping chemical transmission in drosophila. Neuron. 101(5):876-893 e874. 475 Dijk DJ, Beersma DG, Daan S. 1987. Eeg power density during nap sleep: Reflection of an hourglass 476 measuring the duration of prior wakefulness. J Biol Rhythms. 2(3):207-219. 477 Donlea JM, Alam MN, Szymusiak R. 2017. Neuronal substrates of sleep homeostasis; lessons from flies, 478 rats and mice. Curr Opin Neurobiol. 44:228-235. 479 Donlea JM, Pimentel D, Miesenbock G. 2014. Neuronal machinery of sleep homeostasis in drosophila. 480 Neuron. 81(4):860-872. 481 Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ. 2011. Inducing sleep by remote control 482 facilitates memory consolidation in drosophila. Science. 332(6037):1571-1576. 483 Ferrer A, Caelles C, Massot N, Hegardt FG. 1985. Activation of rat-liver cytosolic 484 3-hydroxy-3-methylglutaryl coenzyme a reductase kinase by adenosine 5'-monophosphate. 485 Biochem Bioph Res Co. 132(2):497-504. 486 Fogarty S, Hawley SA, Green KA, Saner N, Mustard KJ, Hardie DG. 2010. Calmodulin-dependent protein 487 kinase kinase-beta activates ampk without forming a stable complex: Synergistic effects of 488 ca2+ and amp. Biochem J. 426(1):109-118.

489	Foltenyi K, Greenspan RJ, Newport JW. 2007. Activation of egfr and erk by rhomboid signaling
490	regulates the consolidation and maintenance of sleep in drosophila. Nat Neurosci.
491	10(9):1160-1167.
492	Franken P, Chollet D, Tafti M. 2001. The homeostatic regulation of sleep need is under genetic control.
493	J Neurosci. 21(8):2610-2621.
494	Funato H, Miyoshi C, Fujiyama T, Kanda T, Sato M, Wang Z, Ma J, Nakane S, Tomita J, Ikkyu A et al. 2016.
495	Forward-genetics analysis of sleep in randomly mutagenized mice. Nature.
496	539(7629):378-383.
497	Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JCP. 2011. Fatty-acid binding proteins
498	modulate sleep and enhance long-term memory consolidation in drosophila. Plos One. 6(1).
499	Gill RK, Yang SH, Meerzaman D, Mechanic LE, Bowman ED, Jeon HS, Chowdhuri SR, Shakoori A,
500	Dracheva T, Hong KM et al. 2011. Frequent homozygous deletion of the lkb1/stk11 gene in
501	non-small cell lung cancer. Oncogene. 30(35):3784-3791.
502	Grubbs JJ, Lopes LE, van der Linden AM, Raizen DM. 2020. A salt-induced kinase is required for the
503	metabolic regulation of sleep. Plos Biology. 18(4).
504	Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J. 1999. Somatic mutation of the
505	peutz-jeghers syndrome gene, lkb1/stk11, in malignant melanoma. Oncogene.
506	18(9):1777-1780.
507	Guo F, Yi W, Zhou MM, Guo AK. 2011. Go signaling in mushroom bodies regulates sleep in drosophila.
508	Sleep. 34(3):273-U173.
509	Han C, Jan LY, Jan YN. 2011. Enhancer-driven membrane markers for analysis of nonautonomous
510	mechanisms reveal neuron-glia interactions in drosophila. Proc Natl Acad Sci U S A.
511	108(23):9673-9678.
512	Hardie DG. 2014. Amp-activated protein kinase: Maintaining energy homeostasis at the cellular and
513	whole-body levels. Annu Rev Nutr. 34:31-55.
514	Hardie DG, Schaffer BE, Brunet A. 2016. Ampk: An energy-sensing pathway with multiple inputs and
515	outputs. Trends in Cell Biology. 26(3):190-201.
516	Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG. 2003. Complexes
517	between the lkb1 tumor suppressor, strad alpha/beta and mo25 alpha/beta are upstream
518	kinases in the amp-activated protein kinase cascade. J Biol. 2(4):28.
519	Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. 1996. Characterization of
520	the amp-activated protein kinase kinase from rat liver and identification of threonine 172 as
521	the major site at which it phosphorylates amp-activated protein kinase. Journal of Biological
522	Chemistry. 271(44):27879-27887.
523	Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG. 2005.
524	Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for
525	amp-activated protein kinase. Cell Metab. 2(1):9-19.
526	Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, Keller JJ, Westerman AM,
527	Scott RJ, Lim W et al. 2006. Frequency and spectrum of cancers in the peutz-jeghers
528	syndrome. Clin Cancer Res. 12(10):3209-3215.
529	Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M,
530	Hoglund P et al. 1998. A serine/threonine kinase gene defective in peutz-jeghers syndrome.

531	Nature. 391(6663):184-187.
532	Hemminki A, Tomlinson I, Markie D, Jarvinen H, Sistonen P, Bjorkqvist AM, Knuutila S, Salovaara R,
533	Bodmer W, Shibata D et al. 1997. Localization of a susceptibility locus for peutz-jeghers
534	syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat
535	Genet. 15(1):87-90.
536	Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI. 2000. Rest in drosophila
537	is a sleep-like state. Neuron. 25(1):129-138.
538	Herzig S, Shaw RJ. 2018. Ampk: Guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol
539	Cell Bio. 19(2):121-135.
540	Honda T, Fujiyama T, Miyoshi C, Ikkyu A, Hotta-Hirashima N, Kanno S, Mizuno S, Sugiyama F, Takahashi
541	S, Funato H et al. 2018. A single phosphorylation site of sik3 regulates daily sleep amounts
542	and sleep need in mice. Proc Natl Acad Sci U S A. 115(41):10458-10463.
543	Hong SP, Leiper FC, Woods A, Carling D, Carlson M. 2003. Activation of yeast snf1 and mammalian
544	amp-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A.
545	100(15):8839-8843.
546	Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. 2005. The
547	ca2+/calmodulin-dependent protein kinase kinases are amp-activated protein kinase kinases.
548	J Biol Chem. 280(32):29060-29066.
549	Ingebritsen TS, Lee HS, Parker RA, Gibson DM. 1978. Reversible modulation of the activities of both
550	liver microsomal hydroxymethylglutaryl coenzyme a reductase and its inactivating enzyme.
551	Evidence for regulation by phosphorylation-dephosphorylation. Biochem Biophys Res
552	Commun. 81(4):1268-1277.
553	Jan M, O'Hara BF, Franken P. 2020. Recent advances in understanding the genetics of sleep. F1000Res.
554	9.
555	Jeghers H, Mc KV, Katz KH. 1949. Generalized intestinal polyposis and melanin spots of the oral
556	mucosa, lips and digits; a syndrome of diagnostic significance. N Engl J Med.
557	241(26):1031-1036.
558	Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller D, Back W, Zimmer M. 1998.
559	Peutz-jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet.
560	18(1):38-44.
561	Ji HB, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera
562	SA et al. 2007. Lkb1 modulates lung cancer differentiation and metastasis. Nature.
563	448(7155):807-U807.
564	Jishage K, Nezu J, Kawase Y, Iwata T, Watanabe M, Miyoshi A, Ose A, Habu K, Kake T, Kamada N et al.
565	2002. Role of lkb1, the causative gene of peutz-jegher's syndrome, in embryogenesis and
566	polyposis. Proc Natl Acad Sci U S A. 99(13):8903-8908.
567	Joiner WJ, Crocker A, White BH, Sehgal A. 2006. Sleep in drosophila is regulated by adult mushroom
568	bodies. Nature. 441(7094):757-760.
569	Klarsfeld A, Leloup JC, Rouyer F. 2003. Circadian rhythms of locomotor activity in drosophila. Behav
570	Processes. 64(2):161-175.
571	Kunst M. Hughes ME. Raccuglia D. Felix M. Li M. Barnett G. Duah J. Nitabach MN. 2014. Calcitonin

572 gene-related peptide neurons mediate sleep-specific circadian output in drosophila. Curr Biol.

573	24(22):2652-2664.
574	Liu QL, Liu S, Kodama L, Driscoll MR, Wu MN. 2012. Two dopaminergic neurons signal to the dorsal
575	fan-shaped body to promote wakefulness in drosophila. Curr Biol. 22(22):2114-2123.
576	Liu S, Liu QL, Tabuchi M, Wu MN. 2016. Sleep drive is encoded by neural plastic changes in a dedicated
577	circuit. Cell. 165(6):1347-1360.
578	Liu YX, Wang TV, Cui Y, Gao S, Rao Y. 2022a. Biochemical purification uncovers mammalian sterile 3
579	(MST3) as a new protein kinase for multifunctional protein kinases AMPK and SIK3. J Biol
580	Chem. 2022.101929.
581	Liu YX, Wang TV, Cui Y, Li C, Jiang L, Rao Y. 2022b. STE20 phosphorylation of AMPK related kinases
582	revealed by biochemical purifications combined with genetics. J Biol Chem. 2022.101928.
583	Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP,
584	Hardie DG et al. 2004. Lkb1 is a master kinase that activates 13 kinases of the ampk subfamily,
585	including mark/par-1. Embo J. 23(4):833-843.
586	Lopez M, Dieguez C. 2014. Cellular energy sensors: Ampk and beyond. Mol Cell Endocrinol.
587	397(1-2):1-3.
588	Martin SG, St Johnston D. 2003. A role for drosophila lkb1 in anterior-posterior axis formation and
589	epithelial polarity. Nature. 421(6921):379-384.
590	Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, Suzuki K, Nakamoto M,
591	Shimizu E, Minna JD et al. 2007. Prevalence and specificity of lkb1 genetic alterations in lung
592	cancers. Oncogene. 26(40):5911-5918.
593	Mehenni H, Gehrig C, Nezu J, Oku A, Shimane M, Rossier C, Guex N, Blouin JL, Scott HS, Antonarakis SE.
594	1998. Loss of lkb1 kinase activity in peutz-jeghers syndrome, and evidence for allelic and
595	locus heterogeneity. Am J Hum Genet. 63(6):1641-1650.
596	Michell BJ, Stapleton D, Mitchelhill KI, House CM, Katsis F, Witters LA, Kemp BE. 1996. Isoform-specific
597	purification and substrate specificity of the 5'-amp-activated protein kinase. Journal of
598	Biological Chemistry. 271(45):28445-28450.
599	Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA, Kemp BE. 1994. Mammalian
600	amp-activated protein-kinase shares structural and functional homology with the catalytic
601	domain of yeast snf1 protein-kinase. Journal of Biological Chemistry. 269(4):2361-2364.
602	Miyoshi H, Nakau M, Ishikawa T, Seldin MF, Oshima M, Taketo MM. 2002. Gastrointestinal
603	hamartomatous polyposis in lkb1 heterozygous knockout mice. Cancer Research.
604	62(8):2261-2266.
605	Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu
606	Rev Neurosci. 35:445-462.
607	Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, Mckay CJ, Carter R, Brunton VG,
608	Frame MC et al. 2010. Lkb1 haploinsufficiency cooperates with kras to promote pancreatic
609	cancer through suppression of p21-dependent growth arrest. Gastroenterology.
610	139(2):586-597.
611	Munday MR, Carling D, Hardie DG. 1988. Negative interactions between phosphorylation of acetyl-coa
612	carboxylase by the cyclic amp-dependent and amp-activated protein-kinases. Febs Letters.
613	235(1-2):144-148.
614	Nagy S, Maurer GW, Hentze JL, Rose M, Werge TM, Rewitz K. 2018. Ampk signaling linked to the

615	schizophrenia-associated 1q21.1 deletion is required for neuronal and sleep maintenance.
616	Plos Genetics. 14(12).
617	Nakada D, Saunders TL, Morrison SJ. 2010. Lkb1 regulates cell cycle and energy metabolism in
618	haematopoietic stem cells. Nature. 468(7324):653-658.
619	Nitabach MN, Taghert PH. 2008. Organization of the drosophila circadian control circuit. Curr Biol.
620	18(2):R84-93.
621	Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. 2015. Sleep disorders, obesity, and
622	aging: The role of orexin. Ageing Res Rev. 20:63-73.
623	Parisky KM, Agosto J, Pulver SR, Shang YH, Kuklin E, Hodge JJL, Kang K, Liu X, Garrity PA, Rosbash M et
624	al. 2008. Pdf cells are a gaba-responsive wake-promoting component of the drosophila sleep
625	circuit. Neuron. 60(4):672-682.
626	Park M, Miyoshi C, Fujiyama T, Kakizaki M, Ikkyu A, Honda T, Choi J, Asano F, Mizuno S, Takahashi S et
627	al. 2020. Loss of the conserved pka sites of sik1 and sik2 increases sleep need. Sci Rep.
628	10(1):8676.
629	Park S, Sonn JY, Oh Y, Lim C, Choe J. 2014. Sifamide and sifamide receptor define a novel neuropeptide
630	signaling to promote sleep in drosophila. Mol Cells. 37(4):295-301.
631	Peutz JLA. 1921. Very remarkable case of familial polyposis of mucous membrane of intestinal tract
632	and nasopharynx accompanied by peculiar pigmentations of skin and mucous membrane.
633	Nederl Maandschr Geneesk. 10:134-146.
634	Pimentel D, Donlea JM, Albot CBT, Ong SMS, Hurston AJFT, Miesenbock G. 2016. Operation of a
635	homeostatic sleep switch. Nature. 536(7616):333-+.
636	Poe AR, Wang B, Sapar ML, Ji H, Li K, Onabajo T, Fazliyeva R, Gibbs M, Qiu Y, Hu Y et al. 2019. Robust
637	crispr/cas9-mediated tissue-specific mutagenesis reveals gene redundancy and perdurance in
638	drosophila. Genetics. 211(2):459-472.
639	Qian Y, Cao Y, Deng B, Yang G, Li J, Xu R, Zhang D, Huang J, Rao Y. 2017. Sleep homeostasis regulated by
640	5ht2b receptor in a small subset of neurons in the dorsal fan-shaped body of drosophila. Elife.
641	6.
642	Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W, Tomlinson I. 1999. Somatic mutations in
643	the peutz-jeghers (lkb1/stkii) gene in sporadic malignant melanomas. J Invest Dermatol.
644	112(4):509-511.
645	Sakamoto K, McCarthy A, Smith D, Green KA, Hardie DG, Ashworth A, Alessi DR. 2005. Deficiency of
646	lkb1 in skeletal muscle prevents ampk activation and glucose uptake during contraction.
647	Embo J. 24(10):1810-1820.
648	Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM, Westra WH, Herman JG,
649	Sidransky D. 2002. Inactivation of lkb1/stk11 is a common event in adenocarcinomas of the
650	lung. Cancer Research. 62(13):3659-3662.
651	Saper CB, Fuller PM. 2017. Wake-sleep circuitry: An overview. Current Opinion in Neurobiology.
652	44:186-192.
653	Sato F, Muragaki Y, Zhang YP. 2015. Dec1 negatively regulates ampk activity via lkb1. Biochem Bioph
654	Res Co. 467(4):711-716.
655	Scammell TE, Arrigoni E, Lipton JO. 2017. Neural circuitry of wakefulness and sleep. Neuron.
656	93(4):747-765.

657 Sengupta S, Nagalingam A, Muniraj N, Bonner MY, Mistriotis P, Afthinos A, Kuppusamy P, Lanoue D, 658 Cho S, Korangath P et al. 2017. Activation of tumor suppressor lkb1 by honokiol abrogates 659 cancer stem-like phenotype in breast cancer via inhibition of oncogenic stat3. Oncogene. 660 36(41):5709-5721. 661 Seugnet L, Suzuki Y, Merlin G, Gottschalk L, Duntley SP, Shaw PJ. 2011. Notch signaling modulates sleep 662 homeostasis and learning after sleep deprivation in drosophila. Curr Biol. 21(10):835-840. 663 Shackelford DB, Shaw RJ. 2009. The lkb1-ampk pathway: Metabolism and growth control in tumour 664 suppression. Nat Rev Cancer. 9(8):563-575. 665 Shang YH, Donelson NC, Vecsey CG, Guo F, Rosbash M, Griffith LC. 2013. Short neuropeptide f is a 666 sleep-promoting inhibitory modulator. Neuron. 80(1):171-183. 667 Shang YH, Griffith LC, Rosbash M. 2008. Light-arousal and circadian photoreception circuits intersect 668 at the large pdf cells of the drosophila brain. P Natl Acad Sci USA. 105(50):19587-19594. 669 Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. 2000. Correlates of sleep and waking in drosophila 670 melanogaster. Science. 287(5459):1834-1837. 671 Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. 2004. The tumor 672 suppressor lkb1 kinase directly activates amp-activated kinase and regulates apoptosis in 673 response to energy stress. P Natl Acad Sci USA. 101(10):3329-3335. 674 Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, DePinho RA, Montminy M, Cantley LC. 2005. The 675 kinase lkb1 mediates glucose homeostasis in liver and therapeutic effects of metformin. 676 Science. 310(5754):1642-1646. 677 Sheeba V, Fogle KJ, Kaneko M, Rashid S, Chou YT, Sharma VK, Holmes TC. 2008. Large ventral lateral 678 neurons modulate arousal and sleep in drosophila. Curr Biol. 18(20):1537-1545. 679 Shen Z, Wen XF, Lan F, Shen ZZ, Shao ZM. 2002. The tumor suppressor gene lkb1 is associated with 680 prognosis in human breast carcinoma. Clinical Cancer Research. 8(7):2085-2090. 681 Skoulidis F, Byers LA, Diao LX, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, 682 Canales JR et al. 2015. Co-occurring genomic alterations define major subsets of kras-mutant 683 lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. 684 Cancer Discovery. 5(8):860-877. 685 Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJR, Schmidt MC, Hardie DG. 2003. Elm1p 686 is one of three upstream kinases for the saccharomyces cerevisiae snf1 complex. Curr Biol. 687 13(15):1299-1305. 688 Taheri S, Lin L, Austin D, Young T, Mignot E. 2004. Short sleep duration is associated with reduced

689 leptin, elevated ghrelin, and increased body mass index (bmi). Sleep. 27:146-147.

Tanwar PS, Mohapatra G, Chiang S, Engler DA, Zhang LH, Kaneko-Tarui T, Ohguchi Y, Birrer MJ, Teixeira
 JM. 2014. Loss of lkb1 and pten tumor suppressor genes in the ovarian surface epithelium
 induces papillary serous ovarian cancer. Carcinogenesis. 35(3):546-553.

- Thimgan MS, Suzuki Y, Seugnet L, Gottschalk L, Shaw PJ. 2010. The perilipin homologue, lipid storage
 droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep
 loss. Plos Biology. 8(8).
- 696Tobler I, Borbely AA. 1986. Sleep eeg in the rat as a function of prior waking. Electroen Clin Neuro.69764(1):74-76.
- Tomlinson IP, Houlston RS. 1997. Peutz-jeghers syndrome. J Med Genet. 34(12):1007-1011.

699	Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S, Kume K. 2012. Identification of a dopamine
700	pathway that regulates sleep and arousal in drosophila. Nat Neurosci. 15(11):1516-1523.
701	Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, Yates JR, 3rd, Fischer WH, Thomas JB,
702	Montminy M. 2011. A hormone-dependent module regulating energy balance. Cell.
703	145(4):596-606.
704	Weber F, Dan Y. 2016. Circuit-based interrogation of sleep control. Nature. 538(7623):51-59.
705	Werth E, Dijk DJ, Achermann P, Borbely AA. 1996. Dynamics of the sleep eeg after an early evening
706	nap: Experimental data and simulations. Am J Physiol. 271(3 Pt 2):R501-510.
707	Westerman AM, Entius MM, de Baar E, Boor PP, Koole R, van Velthuysen ML, Offerhaus GJ, Lindhout D,
708	de Rooij FW, Wilson JH. 1999. Peutz-jeghers syndrome: 78-year follow-up of the original
709	family. Lancet. 353(9160):1211-1215.
710	Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T, Shimamura T, Miller DS, Sharpless
711	NE, Bardeesy N et al. 2009. Somatic lkb1 mutations promote cervical cancer progression. Plos
712	One. 4(4):e5137.
713	Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D. 2005.
714	Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of amp-activated
715	protein kinase in mammalian cells. Cell Metab. 2(1):21-33.
716	Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T,
717	Carlson M, Carling D. 2003. Lkb1 is the upstream kinase in the amp-activated protein kinase
718	cascade. Curr Biol. 13(22):2004-2008.
719	Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S. 2011. Retro-orbital injections in
720	mice. Lab Animal. 40(5):155-160.
721	Yeh LA, Kim KH. 1980. Regulation of acetyl-coa carboxylase - properties of coa activation of acetyl-coa
722	carboxylase. P Natl Acad Sci-Biol. 77(6):3351-3355.
723	Yi W, Zhang YP, Tian YJ, Guo J, Li Y, Guo AK. 2013. A subset of cholinergic mushroom body neurons
724	requires go signaling to regulate sleep in drosophila. Sleep. 36(12):1809-1821.
725	Yurgel ME, Kakad P, Zandawala M, Nassel DR, Godenschwege TA, Keene AC. 2019. A single pair of
726	leucokinin neurons are modulated by feeding state and regulate sleep-metabolism
727	interactions. Plos Biology. 17(2).
728	Zhang X, Yan H, Luo Y, Huang Z, Rao Y. 2018. Thermoregulation-independent regulation of sleep by
729	serotonin revealed in mice defective in serotonin synthesis. Mol Pharmacol. 93(6):657-664.
730	

731 FIGURE LEGENDS

732

Figure 1. Sleep phenotypes of Lkb1 knock-down mutant flies. (A) A diagram 733 734 illustrating the Lkb1 insertion mutant lkb1^{T2}. (B) Relative Lkb1 mRNA levels in lkb1^{T2/T2} (red), lkb1^{T2/+} (blue) and wt (black) flies. (C) Sleep profiles of lkb1^{T2/T2} (red, 735 n=42), $lkb1^{T2/+}$ (blue, n=44), and wt (black, n=44) flies in a 12 h light/12 h dark (LD) 736 737 cycle. (D-G) Statistical analysis of sleep duration, sleep bout number, sleep bout duration and latency to sleep in lkb1^{T2/T2} (red, n=42), lkb1^{T2/+} (blue, n=44) and wt 738 739 (black, n=44) flies. Open bars denote daytime, filled bars denote nighttime. (D) Sleep duration. Nighttime sleep durations of lkb1^{T2/T2} mutants was significantly less than 740 those in lkb1^{T2/+} and wt flies. (E) Sleep bout number. Daytime sleep bout number of 741 lkb1^{T2/T2} mutants was less than that of wt flies. (F) Sleep bout duration. Nighttime 742 sleep bout duration of lkb1^{T2/T2} mutants was significantly less than those of lkb1^{T2/+} 743 and wt flies. (G) Latency to sleep. Latency to sleep after light-off of lkb1^{T2/T2} mutants 744 was significantly prolonged than lkb1^{T2/+} and wt flies. One-way ANOVA was used. 745 n.s. denotes p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent standard 746 747 error of the mean (SEM).

748

Figure 2. Rescue of sleep loss in lkb1^{T2/T2} by Lkb1. (A) A diagram of
lkb1^{T2}-Gal4: a cDNA for the yeast Gal4 gene inserted in the lkb1^{T2} knockdown
mutants. (B) Relative Lkb1 mRNA levels in lkb1^{T2}-Gal4 (blue), UAS-Lkb1;
lkb1^{T2}-Gal4 (red), UAS-Lkb1; lkb1^{T2} (yellow) and wt (black) flies. (C-G) In

753	lkb1 ^{T2} -Gal4 homozygous flies, UAS-Lkb1 cDNA driven by Gal4 to rescue sleep
754	phenotypes of lkb1 knockdown mutants. (C) Sleep profiles of UAS-Lkb1;
755	lkb1 ^{T2} -Gal4 (red, n=45), UAS-Lkb1; lkb1 ^{T2} (yellow, n=47), lkb1 ^{T2} -Gal4 (blue,
756	n=46) and wt (black, n=36) flies. (D-G) Statistical analysis of sleep duration,
757	sleep bout number, sleep bout duration and latency to sleep in UAS-Lkb1;
758	lkb1 ^{T2} -Gal4 (red, n=45), UAS-Lkb1; lkb1 ^{T2} (yellow, n=47), lkb1 ^{T2} -Gal4 (blue,
759	n=46) and wt (black, n=36) flies. Open bars denote daytime, filled bars nighttime.
760	(D) Sleep duration. Nighttime sleep duration of UAS-Lkb1; lkb1 ^{T2} -Gal4 was
761	similar to that of wt mutants, both significantly higher than UAS-Lkb1; $lkb1^{T2}$
762	and lkb1 ^{T2/T2} -Gal4 flies. (E) Sleep bout number. Nighttime sleep bout number of
763	UAS-Lkb1; lkb1 ^{T2} -Gal4 was similar to the wt but significantly higher than
764	UAS-Lkb1; lkb1 ^{T2} and lkb1 ^{T2} -Gal4 flies. (F) Sleep bout duration. Nighttime
765	sleep bout duration of UAS-Lkb1; lkb1 ^{T2} -Gal4 was similar to the wt but
766	significantly higher than UAS-Lkb1; lkb1 ^{T2} and lkb1 ^{T2} -Gal4 flies. (G) Latency to
767	sleep. Latency after light-off of UAS-Lkb1; lkb1 ^{T2} -Gal4 was similar to the wt but
768	significantly shorter than UAS-Lkb1; lkb1 ^{T2} and lkb1 ^{T2} -Gal4 flies. One-way
769	ANOVA was used. n.s. denotes p>0.05, * p<0.05, ** p<0.01, ***p<0.001. Error
770	bars represent SEM.
771	

Figure 3. Sleep phenotypes of mutants from whose neurons Lkb1 was targeted.
(A) Sleep profiles of UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 (red, n=44),

774	UAS-Lkb1-sgRNA/57C10-Gal4 (blue, n=41), and 57C10-Gal4/+;+/UAS-Cas9
775	(black, n=45) flies. (B-E) Statistical analysis of sleep duration, sleep bout number,
776	sleep bout duration and latency to sleep in
777	UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 (red, n=44),
778	UAS-Lkb1-sgRNA/57C10-Gal4 (blue, n=41) and 57C10-Gal4/+;+/UAS-Cas9
779	(black, n=45) flies. Open bars denote daytime, filled bars nighttime. (B) Sleep
780	duration. Daytime and nighttime sleep duration of
781	UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was significantly less than those of
782	UAS-Lkb1-sgRNA/57C10-Gal4 and 57C10-Gal4/+;+/UAS-Cas9 flies. (C) Sleep
783	bout number. Daytime and nighttime sleep bout numbers of
784	UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was not significantly from those of
785	UAS-Lkb1-sgRNA/57C10-Gal4 and 57C10-Gal4/+;+/UAS-Cas9 flies. (D) Sleep
786	bout duration. Nighttime sleep bout duration of
787	UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was significantly less than that of
788	UAS-Lkb1-sgRNA/57C10-Gal4 and 57C10-Gal4/+;+/UAS-Cas9 flies. (E)
789	Latency to sleep. Latency to sleep after light-off of
790	UAS-Lkb1-sgRNA/57C10-Gal4;+/UAS-Cas9 was longer than that of
791	57C10-Gal4/+;+/UAS-Cas9 which was not significantly different from that of
792	UAS-Lkb1-sgRNA/57C10-Gal4 flies. One-way ANOVA was used. n.s. denotes
793	p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM.

Downloaded from https://academic.oup.com/genetics/advance-article/doi/10.1093/genetics/iyac082/6586797 by guest on 18 May 2022

795	Figure 4. Genetic interactions between lkb1 and ampk. (A) Sleep profiles of
796	UAS-Ampk-T184E/57C10; $lkb1^{T2}$ (red, n=19), 57C10; $lkb1^{T2}$ (yellow, n=24),
797	UAS-Ampk-T184E; $lkb1^{T2}$ (blue, n=22) and wt (black, n=24) flies. (B) Sleep
798	profiles of UAS-Ampk-T184A/57C10;lkb1 ^{T2} (red, n=24), 57C10;lkb1 ^{T2} (yellow,
799	n=24), UAS-Ampk-T184A;lkb1 ^{T2} (blue, n=23) and wt (black, n=24) flies. (C)
800	Sleep profiles of UAS-Ampk /57C10;lkb1 ^{T2} (red, n=24), 57C10;lkb1 ^{T2} (yellow,
801	n=24), UAS-Ampk; $lkb1^{T2}$ (blue, n=11) and wt (black, n=24) flies. (D-G)
802	Statistical analysis of sleep duration, sleep bout number, sleep bout duration and
803	latency to sleep in wt (black, n=24), $57C10$; lkb1 ^{T2} (yellow, n=24),
804	UAS-Ampk-T184E;lkb1 ^{T2} (blue, n=22), UAS-Ampk-T184E/57C10;lkb1 ^{T2} (red,
805	n=19), UAS-Ampk-T184A; $lkb1^{T2}$ (blue, n=23),
806	UAS-Ampk-T184A/57C10; $lkb1^{T2}$ (red, n=24), UAS-Ampk; $lkb1^{T2}$ (blue, n=11)
807	and UAS-Ampk /57C10;lkb1 ^{T2} (red, n=24) flies. Open bars denote daytime, filled
808	bars nighttime. N.s. not shown. One-way ANOVA was used. n.s. denotes p>0.05,
809	*p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM.

811 **Figure 5.** Genetic interactions between lkb1 and sik3. (A) Sleep profiles of 812 $lkb1^{T2}$ (red, n=45), Sik3-T196E-flag;lkb1^{T2} (dark red, n=46), Sik3-flag;lkb1^{T2} 813 (orange, n=48), Sik3-T196E-flag (blue, n=45), Sik3-flag (dark blue, n=44) and 814 wt (black, n=46) flies. (D-G) Statistical analysis of sleep duration, sleep bout 815 number, sleep bout duration and latency to sleep in wt (black, n=46), Sik3-flag 816 (dark blue, n=44), Sik3-T196E-flag (blue, n=45), Sik3-flag;lkb1^{T2} (orange, n=48), 817 Sik3-T196E-flag;lkb1^{T2} (dark red, n=46) and lkb1^{T2} (red, n=45) flies. Open bars 818 denote daytime, filled bars nighttime. Statistics for groups Sik3-flag;lkb1^{T2} and 819 Sik3-T196E-flag;lkb1^{T2} were presented. One-way ANOVA was used. n.s. 820 denotes p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM.

821

822 Figure 6. Sleep phenotypes of lkb1 conditional knockout mice. (A) Levels of LKB1 823 protein from Lkb1^{fl/fl} mice injected with AAV-hSyn-Cre-GFP virus (Cre⁺ Lkb1^{fl/fl}, n=4), Lkb1^{fl/fl} mice injected with AAV-hSyn-GFP virus (GFP⁺ Lkb1^{fl/fl}, n=3), Lkb1^{fl/+} 824 mice injected with AAV-hSyn-Cre-GFP virus (Cre⁺ Lkb1^{fl/+}, n=2) and Lkb1^{+/+} mice 825 injected with AAV-hSyn-Cre-GFP virus (Cre⁺ Lkb1^{+/+}, n=2). These mice were among 826 827 those used for EEG recording and analysis. (B) Levels of LKB1 protein in individual mice (genotypes labelled: Cre⁺ Lkb1^{fl/fl}, GFP⁺ Lkb1^{fl/fl}, Cre⁺ Lkb1^{fl/+} and Cre⁺ Lkb1^{+/+}. 828 829 These mice were the same mice as those in (A) but presented individually. (C, E, G) 830 Statistical analysis of wake duration, NREM duration and REM duration in Cre⁺ $Lkb1^{fl/fl}$ (red, n=10), GFP⁺ $Lkb1^{fl/fl}$ (yellow, n=5), $Cre^+ Lkb1^{fl/+}$ (blue, n=7) and Cre^+ 831 Lkb1^{+/+} (black, n=4) mice in a 12:12 LD cycle. White background denotes daytime, 832 833 gray background nighttime. (C) Wake duration. Daytime wake duration of Cre⁺ Lkb1^{fl/fl} mice was higher than those of GFP⁺ Lkb1^{fl/fl}, Cre⁺ Lkb1^{fl/+} or Cre⁺ Lkb1^{+/+} 834 mice. Nighttime wake duration of $Cre^+ Lkb1^{fl/fl}$ mice was higher than that of GFP^+ 835 Lkb1^{fl/fl} mice. (E) NREM duration. Davtime NREM duration of Cre⁺ Lkb1^{fl/fl} mice 836

837	was lower than those of GFP^+ Lkb1 ^{fl/fl} , Cre^+ Lkb1 ^{fl/+} and Cre^+ Lkb1 ^{+/+} mice.
838	Nighttime NREM duration of Cre ⁺ Lkb1 ^{fl/fl} mice was lower than that of GFP ⁺ Lkb1 ^{fl/fl}
839	mice. (G) REM duration. Daytime and nighttime REM durations of Cre ⁺ Lkb1 ^{fl/fl} mice
840	was not significantly different from those of GFP ⁺ Lkb1 ^{fl/fl} , Cre ⁺ Lkb1 ^{fl/+} and Cre ⁺
841	Lkb1 ^{+/+} mice. (D, F, H) EEG power spectrum of (D) WAKE, (F) NREM and (H)
842	REM states in Cre ⁺ Lkb1 ^{fl/fl} (red, n=8), GFP ⁺ Lkb1 ^{fl/fl} (yellow, n=5), Cre ⁺ Lkb1 ^{fl/fl}
843	(blue, n=6) and Cre^+ Lkb1 ^{+/+} (black, n=4) mice. (I) NREM δ -power density of Cre^+
844	$Lkb1^{fl/fl}$ (red, n=8), GFP ⁺ $Lkb1^{fl/fl}$ (yellow, n=5), $Cre^+ Lkb1^{fl/+}$ (blue, n=6) and Cre^+
845	Lkb1 ^{+/+} (black, n=4) mice. One-way ANOVA was used in C, E, G for comparison of
846	Cre ⁺ Lkb1 ^{fl/fl} , Cre ⁺ Lkb1 ^{fl/+} and Cre ⁺ Lkb1 ^{+/+} mice. Unpaired t test was used in C, E,
847	G for comparison of Cre^+ Lkb1 ^{fl/fl} and GFP ⁺ Lkb1 ^{fl/fl} mice. Two-way ANOVA
848	followed by Turkey's multiple comparisons test was used in D, F, H, I. n.s. denotes
849	p>0.05, *p<0.05, **p<0.01, ***p<0.001. Error bars represent SEM.

Downloaded from https://academic.oup.com/genetics/advance-article/doi/10.1093/genetics/iyac082/6586797 by guest on 18 May 2022

ZT(H)

